空间站广场
我的工作空间
App 介绍
分子动力学模拟是理论化学、计算物理、分子生物学、材料科学等领域的基本研究方法,其中,对原子间势能函数的精确建模,一直是一个核心问题。深度势能(DP)等方法基于机器学习建模,实现了分子动力学模拟精度与速度的统一,在合金、半导体、电池材料、小分子等各个体系都有着广泛的应用。
然而,随着应用体系越来越复杂,在单一体系上从头生产数据、训练势函数的方式,其成本也越来越高,很大程度上阻碍了具体体系上的应用发展;另一方面,虽然有基于预训练模型的初步尝试来降低生产成本,其模型结构、生产范式迭代迅速,使用门槛也越来越高,用户也迫切需要使用更高效、自动化的势能函数生产方式,从而节省计算和操作成本。
为了更好地解决上述问题,我们推出了DP Combo APP,从机器学习操作平台(MLOps)和深度势能模型生命周期的角度,希望提供给用户一套自动化生产、评测、部署的系统。对于用户来说,可以一键使用DP系列最新模型方法和生产范式,根据不同的使用场景提供最优质的解决方案,从而加速解决具体体系的应用问题;对于开发者来说,可以让最新模型、生产范式以最快的速度上线,和用户使用无缝衔接,加速模型、产品迭代,从而进一步赋能微观模拟的上下游生态。
最佳实践
参考文献
[1] Zhang, D. et al. DPA-2: Towards a universal large atomic model for molecular and material simulation. Preprint at https://doi.org/10.48550/arXiv.2312.15492 (2023).
[2] Zhang, D. et al. DPA-1: Pretraining of Attention-based Deep Potential Model for Molecular Simulation. Preprint at https://doi.org/10.48550/arXiv.2208.08236 (2022).
[3] Zeng, J. et al. DeePMD-kit v2: A software package for deep potential models. The Journal of Chemical Physics 159, 054801 (2023).
[4] Zhang, Y. et al. DP-GEN: A concurrent learning platform for the generation of reliable deep learning based potential energy models. Computer Physics Communications 253, 107206 (2020).
[5] Wang, H., Zhang, L., Han, J. & E, W. DeePMD-kit: A deep learning package for many-body potential energy representation and molecular dynamics. Computer Physics Communications 228, 178–184 (2018).
[6] Zhang, L. et al. End-to-end Symmetry Preserving Inter-atomic Potential Energy Model for Finite and Extended Systems. Preprint at https://doi.org/10.48550/arXiv.1805.09003 (2018).