Bohrium
robot
新建

空间站广场

论文
Notebooks
比赛
课程
Apps
镜像市场
实验室
Uni-Lab
我的主页
我的Notebooks
我的知识库
我的足迹

我的工作空间

任务
节点
镜像
文件
数据集
项目
数据库
公开
Machine Learning Tutorials
Machine Learning
Machine Learning
sisyphus
更新于 2024-12-25
推荐镜像 :Basic Image:ubuntu22.04-py3.10
推荐机型 :c3_m4_1 * NVIDIA T4
covid(v1)

1. 测试环境可用性

代码
文本
[2]
import torch

x = torch.tensor([[1.,0.], [-1.,1.]], requires_grad=True)
z = x.pow(2).sum()
z.backward()
print(x.grad)


device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f'device: {device}')
tensor([[ 2.,  0.],
        [-2.,  2.]])
device: cuda
代码
文本

2. 依赖包引入

代码
文本
[3]
# 数据、矩阵运算
import math
import numpy as np

# 数据读写
import pandas as pd
import os
import csv

# 进度条
from tqdm.notebook import tqdm

# 深度学习
import torch
import torch.nn as nn
from torch.utils.data import DataLoader, Dataset, random_split
from torchviz import make_dot
from torch.utils.tensorboard import SummaryWriter

代码
文本

3. 训练准备

代码
文本
[4]
def same_seed(seed):
torch.backends.cudnn.deterministic = True # 保证每次结果一样
torch.backends.cudnn.benchmark = False
np.random.seed(seed)
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(seed)
print(f"set seed = {seed}")
def train_valid_split(dataset, valid_ratio=0.2, seed=1):
valid_set_size = int(valid_ratio * len(dataset))
train_set_size = len(dataset) - valid_set_size
train_dataset, valid_dataset = random_split(dataset, [train_set_size, valid_set_size], generator=torch.Generator().manual_seed(seed))
return np.array(train_dataset), np.array(valid_dataset)

def predict(test_loader, model, device):
model.eval()
preds = []
for x in tqdm(test_loader):
x = x.to(device)
with torch.no_grad():
y_pred = model(x)
preds.append(y_pred.cpu())
preds = torch.cat(preds, dim=0).numpy()
return preds
代码
文本
[5]
class COVIDDataset(Dataset):
"""_summary_

Args:
Dataset (_type_): _description_
x: np.ndarray 特征矩阵
y: np.ndarray 标签向量,如果是 None 则为预测的数据集
"""
def __init__(self, x, y=None):
if y is None:
self.y = y
else:
self.y = torch.FloatTensor(y)
self.x = torch.FloatTensor(x)
def __getitem__(self, index):
if self.y is None:
return self.x[index]
return self.x[index], self.y[index]
def __len__(self):
return len(self.x)
代码
文本
[6]
class MyModel(nn.Module):
def __init__(self, input_dim, hidden_dims=[128, 256, 128], dropout_rate=0.2):
# hidden_dims 的设置能够先增加维度,再减少维度,帮助捕获 low/high level 的特征
super(MyModel, self).__init__()
# Batch Normalization for input
# 增加 normalization 层能提升训练稳定性,对时序数据尤为重要
self.input_bn = nn.BatchNorm1d(input_dim)
# Build dynamic layers
layers = []
prev_dim = input_dim
# Add hidden layers
for hidden_dim in hidden_dims:
layers.extend([
nn.Linear(prev_dim, hidden_dim),
nn.BatchNorm1d(hidden_dim),
nn.ReLU(),
nn.Dropout(dropout_rate) # 增加 dropout 层能减少过拟合,提升泛化能力
])
prev_dim = hidden_dim
self.hidden_layers = nn.Sequential(*layers)
# Output layer
self.output_layer = nn.Sequential(
nn.Linear(prev_dim, 64),
nn.ReLU(),
nn.Linear(64, 1)
)
# Optional: Residual connections
# 对较深的网络很重要,提升训练稳定性
self.has_residual = (input_dim == hidden_dims[-1])
if self.has_residual:
self.residual_proj = nn.Linear(input_dim, hidden_dims[-1])
# self.net = nn.Sequential(
# nn.Linear(input_dim, 32),
# nn.Sigmoid(),
# nn.Linear(32, 32),
# nn.Sigmoid(),
# nn.Linear(32, 1)
# )
def forward(self, x):
# x = self.net(x)
# x = x.squeeze(1)
# return x
# Input normalization
x = self.input_bn(x)
# Process through hidden layers
hidden = self.hidden_layers(x)
# Add residual connection if dimensions match
if self.has_residual:
hidden = hidden + self.residual_proj(x)
# Output processing
out = self.output_layer(hidden)
return out.squeeze(1)
代码
文本
[7]
def select_feat(train_data, valid_data, test_data, select_all=True):
y_train, y_valid = train_data[:, -1], valid_data[:, -1]
raw_x_train, raw_x_valid, raw_x_test = train_data[:, :-1], valid_data[:, :-1], test_data
if select_all:
feat_idx = list(range(raw_x_train.shape[1]))
else:
feat_idx = list(range(52)) + list(range(53, 54)) # 优化选择特征
return raw_x_train[:, feat_idx], raw_x_valid[:, feat_idx], raw_x_test[:, feat_idx], y_train, y_valid
代码
文本
[8]
def trainer(train_loader, valid_loader, model, config, device):
criterion = nn.MSELoss(reduction='mean')
# criterion = nn.BCELoss(reduction='mean') # 二分类问题使用交叉熵损失函数,适合判断 0-1 范围的数值
# criterion = nn.BCEWithLogitsLoss(reduction='mean') # 二分类问题结合 Sigmoid 激活,数值稳定性更好
# criterion = nn.HuberLoss(delta=1.0) # 平滑的 L1 损失函数,在误差较小时是 MSE,在误差较大时是 L1,更擅长处理异常值
# optimizer = torch.optim.SGD(model.parameters(), lr=config["learning_rate"], momentum=0.9)
optimizer = torch.optim.Adam(model.parameters(), lr=config["learning_rate"], weight_decay=config["weight_decay"], betas=(0.9, 0.999)) # 自适应学习率优化器,结合了梯度的均值和方差来调整每个参数的学习率,更擅长处理稀疏梯度和非平稳目标
# optimizer = torch.optim.AdamW(model.parameters(), lr=config["learning_rate"], weight_decay=config["weight_decay"]) # 自适应学习率优化器,结合了梯度的均值和方差来调整每个参数的学习率,更擅长处理稀疏梯度和非平稳目标
# scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode="min", factor=0.1, patience=10, verbose=True) # 学习率调度器,当验证损失不再下降时,降低学习率
writer = SummaryWriter(log_dir=config["log_dir"])
if not os.path.exists(config["log_dir"]):
os.makedirs(config["log_dir"])
if not os.path.exists(config["model_dir"]):
os.makedirs(config["model_dir"])
n_epochs, best_loss, step, early_stop_count = config["n_epochs"], math.inf, 0, 0
for epoch in range(n_epochs):
model.train()
loss_record = []
# 进度条, position=0 表示第一个进度条,leave=True 表示训练完成后不删除进度条
train_pbar = tqdm(train_loader, position=0, leave=True)
train_pbar.set_description(f"Epoch [{epoch+1}/{n_epochs}]")
for x, y in train_pbar:
optimizer.zero_grad() # 梯度清零
x, y = x.to(device), y.to(device)
y_pred = model(x)
loss = criterion(y_pred, y)
loss.backward() # 反向传播,计算梯度
optimizer.step() # 更新参数
step += 1
loss_record.append(loss.item())
# 训练完一个 batch 后将 loss 显示在进度条上,detach() 将 loss 从计算图中分离,避免内存占用
train_pbar.set_postfix({'train_loss': loss.detach().item()})
mean_train_loss = sum(loss_record) / len(loss_record)
writer.add_scalar("train_loss", mean_train_loss, epoch)
model.eval()
loss_record = []
for x, y in valid_loader:
x, y = x.to(device), y.to(device)
with torch.no_grad():
y_pred = model(x)
loss = criterion(y_pred, y)
loss_record.append(loss.item())
mean_valid_loss = sum(loss_record) / len(loss_record)
print(f'Epoch [{epoch+1}/{n_epochs}], train_loss: {mean_train_loss:.4f}, valid_loss: {mean_valid_loss:.4f}')
writer.add_scalar("valid_loss", mean_valid_loss, epoch)
if mean_valid_loss < best_loss:
best_loss = mean_valid_loss
torch.save(model.state_dict(), os.path.join(config["model_dir"], "best_model.pth"))
print(f"Save model at epoch {epoch+1} with loss {best_loss:.4f}")
early_stop_count = 0
else:
early_stop_count += 1
if early_stop_count > config["early_stop"]:
print(f"Early stop at epoch {epoch+1}")
return
代码
文本
[9]
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
config = {
"seed": 3014159,
"select_all": True, # 是否选择所有特征
"valid_ratio": 0.2,
"n_epochs": 3000, # 数据遍历训练次数
"batch_size": 256,
"learning_rate": 1e-5,
"weight_decay": 0.01,
"early_stop": 400, # 如果 early_stop 次 valid_loss 都没有下降就停止训练
"log_dir": "./logs/",
"save_path": "./models/model.ckpt", # 模型保存路径
"model_dir": "./model"
}
代码
文本
[10]
same_seed(config["seed"]) # 设置随机种子方便复现

pd.set_option('display.max_columns', 200) # 设置显示数据的列数
train_df, test_df = pd.read_csv("/bohr/covid-9qxe/v1/covid.train.csv"), pd.read_csv("/bohr/covid-9qxe/v1/covid.test.csv")
display(train_df.head(3)) # 显示数据的前三行
train_data, test_data = train_df.values, test_df.values
del train_df, test_df # 删除数据,释放内存
train_data, valid_data = train_valid_split(train_data, config["valid_ratio"], config["seed"])

print(f"""train data size: {train_data.shape}
valid data size: {valid_data.shape}
test data size: {test_data.shape}""")

# 选择特征
x_train, x_valid, x_test, y_train, y_valid = select_feat(train_data, valid_data, test_data, config["select_all"])

print(f"number of features: {x_train.shape[1]}")

train_dataset, valid_dataset, test_dataset = COVIDDataset(x_train, y_train), COVIDDataset(x_valid, y_valid), COVIDDataset(x_test, None)
train_loader = DataLoader(train_dataset, batch_size=config["batch_size"], shuffle=True, pin_memory=True)
valid_loader = DataLoader(valid_dataset, batch_size=config["batch_size"], shuffle=True, pin_memory=True)
test_loader = DataLoader(test_dataset, batch_size=config["batch_size"], shuffle=False, pin_memory=True)
set seed = 3014159
id AL AK AZ AR CA CO CT FL GA ID IL IN IA KS KY LA MD MA MI MN MS MO NE NV NJ NM NY NC OH OK OR RI SC TX UT VA WA cli ili hh_cmnty_cli nohh_cmnty_cli wearing_mask travel_outside_state work_outside_home shop restaurant spent_time large_event public_transit anxious depressed worried_finances tested_positive cli.1 ili.1 hh_cmnty_cli.1 nohh_cmnty_cli.1 wearing_mask.1 travel_outside_state.1 work_outside_home.1 shop.1 restaurant.1 spent_time.1 large_event.1 public_transit.1 anxious.1 depressed.1 worried_finances.1 tested_positive.1 cli.2 ili.2 hh_cmnty_cli.2 nohh_cmnty_cli.2 wearing_mask.2 travel_outside_state.2 work_outside_home.2 shop.2 restaurant.2 spent_time.2 large_event.2 public_transit.2 anxious.2 depressed.2 worried_finances.2 tested_positive.2 cli.3 ili.3 hh_cmnty_cli.3 nohh_cmnty_cli.3 wearing_mask.3 travel_outside_state.3 work_outside_home.3 shop.3 restaurant.3 spent_time.3 large_event.3 public_transit.3 anxious.3 depressed.3 worried_finances.3 tested_positive.3 cli.4 ili.4 hh_cmnty_cli.4 nohh_cmnty_cli.4 wearing_mask.4 travel_outside_state.4 work_outside_home.4 shop.4 restaurant.4 spent_time.4 large_event.4 public_transit.4 anxious.4 depressed.4 worried_finances.4 tested_positive.4
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.658466 0.724606 12.939284 8.556230 76.521693 7.863621 33.069066 64.129378 33.438714 40.539878 17.446499 3.993190 10.122837 7.841023 37.992365 7.374846 0.653157 0.713249 12.488933 8.219380 75.179558 8.083434 32.564654 65.212903 34.285572 40.697210 17.754941 3.997443 10.161621 8.067275 37.882278 7.219989 0.677783 0.737965 12.487637 8.135510 74.189695 8.001016 32.145331 66.258549 34.931095 40.889258 18.038068 3.970457 10.043014 7.983358 37.705024 7.077938 0.666751 0.723506 12.367718 8.006131 73.211902 7.873342 31.330236 66.753902 35.586606 40.741650 17.800711 3.984791 10.148898 8.262288 37.384963 7.452243 0.685628 0.740943 12.364307 8.151578 71.820231 7.944531 31.113209 67.394551 36.674291 40.743132 17.842221 4.093712 10.440071 8.627117 37.329512 7.456154
1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.693287 0.675962 15.008467 11.091818 82.375469 11.082587 36.373964 60.471825 30.516978 43.162123 16.038761 4.519762 12.133287 10.155721 33.977549 9.850027 0.738029 0.720511 15.070049 10.990937 80.943299 10.596788 36.435828 61.653141 31.449290 43.751356 16.752518 4.385694 11.911724 9.798448 32.786802 10.050547 0.831586 0.827523 14.568504 10.578924 79.096391 10.418171 35.851804 62.835720 32.802637 43.753525 17.195922 4.671201 11.418314 10.600311 32.679030 10.388084 0.767643 0.763580 14.264862 10.212529 76.645984 10.614731 34.639961 63.652437 34.147714 44.682727 17.705140 4.938357 11.056725 10.889148 32.933142 8.707858 0.713255 0.719378 12.894363 8.919288 74.687112 10.523814 33.920257 64.398380 34.612238 44.035688 17.808103 4.924935 10.172662 9.954333 32.508881 8.010957
2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0.617041 0.617041 8.614719 5.238097 87.040999 15.569851 33.366362 58.819368 24.674416 36.678937 13.490946 6.639301 9.753290 7.691015 38.685771 3.897851 0.663597 0.635459 8.472831 5.154184 86.743467 15.915242 33.012910 60.157822 25.322821 36.456240 13.385945 6.700146 9.949982 7.833514 38.036480 3.083111 0.534394 0.497435 8.493353 5.125553 86.647289 15.963496 32.471093 60.910411 25.158967 35.968207 13.656070 6.748557 10.664876 7.975821 37.826924 3.132834 0.536224 0.498305 8.227657 5.298912 86.285798 15.788676 31.931642 61.233289 25.156025 36.032687 13.863302 6.879646 10.731187 7.847829 37.128714 3.444182 0.479111 0.432445 8.067909 5.333533 86.312419 16.477784 31.604604 62.101064 26.521875 36.746453 13.903667 7.313833 10.388712 7.956139 36.745588 2.906977
train data size: (2160, 118)
      valid data size: (539, 118)
      test data size: (1078, 117)
number of features: 117
代码
文本

4. 训练

代码
文本
[11]
model = MyModel(input_dim=x_train.shape[1]).to(device)
trainer(train_loader, valid_loader, model, config, device)
Epoch [1/3000], train_loss: 139.5766, valid_loss: 118.2404
Save model at epoch 1 with loss 118.2404
Epoch [2/3000], train_loss: 137.9884, valid_loss: 128.0933
Epoch [3/3000], train_loss: 138.3064, valid_loss: 144.4278
Epoch [4/3000], train_loss: 136.3052, valid_loss: 124.1926
Epoch [5/3000], train_loss: 134.6186, valid_loss: 117.3061
Save model at epoch 5 with loss 117.3061
Epoch [6/3000], train_loss: 133.7687, valid_loss: 121.2401
Epoch [7/3000], train_loss: 134.3205, valid_loss: 137.7359
Epoch [8/3000], train_loss: 134.7792, valid_loss: 136.8165
Epoch [9/3000], train_loss: 134.0196, valid_loss: 118.4918
Epoch [10/3000], train_loss: 133.6286, valid_loss: 131.2332
Epoch [11/3000], train_loss: 132.2152, valid_loss: 132.0747
Epoch [12/3000], train_loss: 131.9956, valid_loss: 127.4537
Epoch [13/3000], train_loss: 132.7281, valid_loss: 127.7854
Epoch [14/3000], train_loss: 131.9076, valid_loss: 127.2060
Epoch [15/3000], train_loss: 131.7397, valid_loss: 125.3474
Epoch [16/3000], train_loss: 131.0049, valid_loss: 125.6164
Epoch [17/3000], train_loss: 131.8282, valid_loss: 142.5277
Epoch [18/3000], train_loss: 129.5784, valid_loss: 127.1901
Epoch [19/3000], train_loss: 129.2432, valid_loss: 117.1289
Save model at epoch 19 with loss 117.1289
Epoch [20/3000], train_loss: 127.8943, valid_loss: 115.3251
Save model at epoch 20 with loss 115.3251
Epoch [21/3000], train_loss: 128.5448, valid_loss: 130.9576
Epoch [22/3000], train_loss: 128.9125, valid_loss: 128.8439
Epoch [23/3000], train_loss: 128.3417, valid_loss: 116.5680
Epoch [24/3000], train_loss: 127.3967, valid_loss: 131.3596
Epoch [25/3000], train_loss: 126.0662, valid_loss: 130.8689
Epoch [26/3000], train_loss: 126.5969, valid_loss: 132.4868
Epoch [27/3000], train_loss: 126.2205, valid_loss: 137.9347
Epoch [28/3000], train_loss: 126.9189, valid_loss: 124.8268
Epoch [29/3000], train_loss: 125.5745, valid_loss: 122.3595
Epoch [30/3000], train_loss: 124.6905, valid_loss: 121.4730
Epoch [31/3000], train_loss: 123.7385, valid_loss: 118.7843
Epoch [32/3000], train_loss: 124.0567, valid_loss: 118.9881
Epoch [33/3000], train_loss: 122.4790, valid_loss: 117.0455
Epoch [34/3000], train_loss: 122.5866, valid_loss: 129.2986
Epoch [35/3000], train_loss: 121.3201, valid_loss: 136.1593
Epoch [36/3000], train_loss: 121.9207, valid_loss: 120.3867
Epoch [37/3000], train_loss: 121.1384, valid_loss: 120.6967
Epoch [38/3000], train_loss: 119.6513, valid_loss: 141.1027
Epoch [39/3000], train_loss: 119.5895, valid_loss: 112.1731
Save model at epoch 39 with loss 112.1731
Epoch [40/3000], train_loss: 118.8114, valid_loss: 107.8710
Save model at epoch 40 with loss 107.8710
Epoch [41/3000], train_loss: 117.8312, valid_loss: 126.4329
Epoch [42/3000], train_loss: 118.4546, valid_loss: 111.6790
Epoch [43/3000], train_loss: 116.4630, valid_loss: 121.3394
Epoch [44/3000], train_loss: 118.5037, valid_loss: 128.4467
Epoch [45/3000], train_loss: 116.3164, valid_loss: 113.5311
Epoch [46/3000], train_loss: 115.3931, valid_loss: 119.8654
Epoch [47/3000], train_loss: 116.0778, valid_loss: 107.4870
Save model at epoch 47 with loss 107.4870
Epoch [48/3000], train_loss: 116.1162, valid_loss: 119.1821
Epoch [49/3000], train_loss: 114.7758, valid_loss: 110.1279
Epoch [50/3000], train_loss: 114.6469, valid_loss: 112.6412
Epoch [51/3000], train_loss: 112.8317, valid_loss: 110.8884
Epoch [52/3000], train_loss: 113.7202, valid_loss: 107.1872
Save model at epoch 52 with loss 107.1872
Epoch [53/3000], train_loss: 110.6876, valid_loss: 102.6585
Save model at epoch 53 with loss 102.6585
Epoch [54/3000], train_loss: 112.4359, valid_loss: 113.1940
Epoch [55/3000], train_loss: 110.5392, valid_loss: 99.7370
Save model at epoch 55 with loss 99.7370
Epoch [56/3000], train_loss: 111.7432, valid_loss: 105.4859
Epoch [57/3000], train_loss: 111.8331, valid_loss: 105.9865
Epoch [58/3000], train_loss: 109.4070, valid_loss: 113.4155
Epoch [59/3000], train_loss: 109.2464, valid_loss: 104.9797
Epoch [60/3000], train_loss: 108.7261, valid_loss: 107.0595
Epoch [61/3000], train_loss: 107.7607, valid_loss: 114.8707
Epoch [62/3000], train_loss: 107.3662, valid_loss: 99.7928
Epoch [63/3000], train_loss: 108.6218, valid_loss: 103.0415
Epoch [64/3000], train_loss: 107.3561, valid_loss: 110.9836
Epoch [65/3000], train_loss: 105.9315, valid_loss: 107.4130
Epoch [66/3000], train_loss: 104.6493, valid_loss: 99.9879
Epoch [67/3000], train_loss: 103.2033, valid_loss: 104.2499
Epoch [68/3000], train_loss: 105.1562, valid_loss: 96.0662
Save model at epoch 68 with loss 96.0662
Epoch [69/3000], train_loss: 104.0371, valid_loss: 111.0737
Epoch [70/3000], train_loss: 102.4527, valid_loss: 104.1862
Epoch [71/3000], train_loss: 102.4560, valid_loss: 109.0043
Epoch [72/3000], train_loss: 103.0405, valid_loss: 98.7913
Epoch [73/3000], train_loss: 100.3643, valid_loss: 99.2793
Epoch [74/3000], train_loss: 101.3186, valid_loss: 97.7527
Epoch [75/3000], train_loss: 99.7935, valid_loss: 106.6000
Epoch [76/3000], train_loss: 100.5092, valid_loss: 89.1752
Save model at epoch 76 with loss 89.1752
Epoch [77/3000], train_loss: 99.4333, valid_loss: 94.5176
Epoch [78/3000], train_loss: 97.9135, valid_loss: 98.1505
Epoch [79/3000], train_loss: 98.8644, valid_loss: 95.9610
Epoch [80/3000], train_loss: 98.7608, valid_loss: 92.7500
Epoch [81/3000], train_loss: 96.1122, valid_loss: 100.4405
Epoch [82/3000], train_loss: 97.3325, valid_loss: 106.7446
Epoch [83/3000], train_loss: 95.9317, valid_loss: 105.2933
Epoch [84/3000], train_loss: 93.9193, valid_loss: 94.4178
Epoch [85/3000], train_loss: 96.0619, valid_loss: 95.2798
Epoch [86/3000], train_loss: 93.7666, valid_loss: 96.6680
Epoch [87/3000], train_loss: 95.3819, valid_loss: 115.5819
Epoch [88/3000], train_loss: 95.7523, valid_loss: 93.1387
Epoch [89/3000], train_loss: 93.1239, valid_loss: 95.9260
Epoch [90/3000], train_loss: 91.6966, valid_loss: 94.1136
Epoch [91/3000], train_loss: 92.0919, valid_loss: 93.3891
Epoch [92/3000], train_loss: 92.1208, valid_loss: 84.7485
Save model at epoch 92 with loss 84.7485
Epoch [93/3000], train_loss: 90.8799, valid_loss: 86.7471
Epoch [94/3000], train_loss: 90.1810, valid_loss: 91.6646
Epoch [95/3000], train_loss: 90.8829, valid_loss: 88.7704
Epoch [96/3000], train_loss: 89.9924, valid_loss: 104.6692
Epoch [97/3000], train_loss: 88.3028, valid_loss: 90.2959
Epoch [98/3000], train_loss: 88.7687, valid_loss: 95.6125
Epoch [99/3000], train_loss: 88.5024, valid_loss: 82.5349
Save model at epoch 99 with loss 82.5349
Epoch [100/3000], train_loss: 86.6704, valid_loss: 95.1566
Epoch [101/3000], train_loss: 87.2254, valid_loss: 85.5508
Epoch [102/3000], train_loss: 87.0074, valid_loss: 85.0041
Epoch [103/3000], train_loss: 85.4205, valid_loss: 80.9055
Save model at epoch 103 with loss 80.9055
Epoch [104/3000], train_loss: 84.5719, valid_loss: 80.2012
Save model at epoch 104 with loss 80.2012
Epoch [105/3000], train_loss: 85.4982, valid_loss: 83.9355
Epoch [106/3000], train_loss: 84.2141, valid_loss: 94.0496
Epoch [107/3000], train_loss: 82.3537, valid_loss: 79.9973
Save model at epoch 107 with loss 79.9973
Epoch [108/3000], train_loss: 84.2201, valid_loss: 79.4920
Save model at epoch 108 with loss 79.4920
Epoch [109/3000], train_loss: 82.7280, valid_loss: 91.0889
Epoch [110/3000], train_loss: 82.3507, valid_loss: 77.6771
Save model at epoch 110 with loss 77.6771
Epoch [111/3000], train_loss: 81.4119, valid_loss: 81.8435
Epoch [112/3000], train_loss: 79.6351, valid_loss: 83.6556
Epoch [113/3000], train_loss: 79.9374, valid_loss: 81.4595
Epoch [114/3000], train_loss: 79.7891, valid_loss: 73.8002
Save model at epoch 114 with loss 73.8002
Epoch [115/3000], train_loss: 79.4246, valid_loss: 72.8330
Save model at epoch 115 with loss 72.8330
Epoch [116/3000], train_loss: 79.2646, valid_loss: 78.2507
Epoch [117/3000], train_loss: 77.5909, valid_loss: 77.6639
Epoch [118/3000], train_loss: 77.3433, valid_loss: 79.8459
Epoch [119/3000], train_loss: 75.8327, valid_loss: 75.3193
Epoch [120/3000], train_loss: 76.4769, valid_loss: 71.5050
Save model at epoch 120 with loss 71.5050
Epoch [121/3000], train_loss: 76.9375, valid_loss: 71.3438
Save model at epoch 121 with loss 71.3438
Epoch [122/3000], train_loss: 75.4560, valid_loss: 81.5171
Epoch [123/3000], train_loss: 75.5892, valid_loss: 78.8160
Epoch [124/3000], train_loss: 74.5354, valid_loss: 74.8508
Epoch [125/3000], train_loss: 74.4622, valid_loss: 77.1247
Epoch [126/3000], train_loss: 73.0414, valid_loss: 69.3132
Save model at epoch 126 with loss 69.3132
Epoch [127/3000], train_loss: 71.8749, valid_loss: 75.4420
Epoch [128/3000], train_loss: 73.1140, valid_loss: 71.9650
Epoch [129/3000], train_loss: 72.9915, valid_loss: 61.5677
Save model at epoch 129 with loss 61.5677
Epoch [130/3000], train_loss: 72.2881, valid_loss: 75.0963
Epoch [131/3000], train_loss: 70.3347, valid_loss: 77.9925
Epoch [132/3000], train_loss: 70.1101, valid_loss: 69.6794
Epoch [133/3000], train_loss: 68.5557, valid_loss: 70.0589
Epoch [134/3000], train_loss: 68.5729, valid_loss: 69.6483
Epoch [135/3000], train_loss: 67.2226, valid_loss: 63.6267
Epoch [136/3000], train_loss: 67.4305, valid_loss: 74.5330
Epoch [137/3000], train_loss: 68.6171, valid_loss: 68.2613
Epoch [138/3000], train_loss: 66.8302, valid_loss: 71.5435
Epoch [139/3000], train_loss: 67.5081, valid_loss: 69.6177
Epoch [140/3000], train_loss: 66.3250, valid_loss: 62.0767
Epoch [141/3000], train_loss: 65.3406, valid_loss: 64.8807
Epoch [142/3000], train_loss: 65.2325, valid_loss: 66.9634
Epoch [143/3000], train_loss: 65.4681, valid_loss: 70.8324
Epoch [144/3000], train_loss: 64.6714, valid_loss: 63.7118
Epoch [145/3000], train_loss: 62.8897, valid_loss: 65.4815
Epoch [146/3000], train_loss: 63.7216, valid_loss: 69.7600
Epoch [147/3000], train_loss: 63.1670, valid_loss: 61.4262
Save model at epoch 147 with loss 61.4262
Epoch [148/3000], train_loss: 61.6369, valid_loss: 65.2230
Epoch [149/3000], train_loss: 60.6019, valid_loss: 63.8506
Epoch [150/3000], train_loss: 60.5292, valid_loss: 62.4845
Epoch [151/3000], train_loss: 60.7085, valid_loss: 60.3764
Save model at epoch 151 with loss 60.3764
Epoch [152/3000], train_loss: 60.0858, valid_loss: 59.3511
Save model at epoch 152 with loss 59.3511
Epoch [153/3000], train_loss: 58.6724, valid_loss: 61.4382
Epoch [154/3000], train_loss: 59.0643, valid_loss: 62.5929
Epoch [155/3000], train_loss: 59.5613, valid_loss: 60.9093
Epoch [156/3000], train_loss: 58.6432, valid_loss: 57.5479
Save model at epoch 156 with loss 57.5479
Epoch [157/3000], train_loss: 57.7811, valid_loss: 58.6402
Epoch [158/3000], train_loss: 57.3099, valid_loss: 57.8240
Epoch [159/3000], train_loss: 57.1341, valid_loss: 65.9074
Epoch [160/3000], train_loss: 56.9328, valid_loss: 56.0764
Save model at epoch 160 with loss 56.0764
Epoch [161/3000], train_loss: 56.1301, valid_loss: 55.8906
Save model at epoch 161 with loss 55.8906
Epoch [162/3000], train_loss: 55.3065, valid_loss: 55.1928
Save model at epoch 162 with loss 55.1928
Epoch [163/3000], train_loss: 54.8882, valid_loss: 54.6191
Save model at epoch 163 with loss 54.6191
Epoch [164/3000], train_loss: 56.3228, valid_loss: 58.1769
Epoch [165/3000], train_loss: 54.5537, valid_loss: 53.4960
Save model at epoch 165 with loss 53.4960
Epoch [166/3000], train_loss: 53.3736, valid_loss: 54.0034
Epoch [167/3000], train_loss: 53.6187, valid_loss: 61.7457
Epoch [168/3000], train_loss: 53.4735, valid_loss: 52.5330
Save model at epoch 168 with loss 52.5330
Epoch [169/3000], train_loss: 53.0966, valid_loss: 58.3103
Epoch [170/3000], train_loss: 52.5925, valid_loss: 52.4767
Save model at epoch 170 with loss 52.4767
Epoch [171/3000], train_loss: 50.5912, valid_loss: 50.2451
Save model at epoch 171 with loss 50.2451
Epoch [172/3000], train_loss: 51.3662, valid_loss: 55.6508
Epoch [173/3000], train_loss: 50.7783, valid_loss: 53.9877
Epoch [174/3000], train_loss: 50.1967, valid_loss: 50.8341
Epoch [175/3000], train_loss: 50.0258, valid_loss: 54.7734
Epoch [176/3000], train_loss: 50.5454, valid_loss: 47.3481
Save model at epoch 176 with loss 47.3481
Epoch [177/3000], train_loss: 48.8458, valid_loss: 52.2881
Epoch [178/3000], train_loss: 49.3889, valid_loss: 54.7139
Epoch [179/3000], train_loss: 49.0955, valid_loss: 53.9006
Epoch [180/3000], train_loss: 48.1140, valid_loss: 46.1271
Save model at epoch 180 with loss 46.1271
Epoch [181/3000], train_loss: 48.2255, valid_loss: 50.0804
Epoch [182/3000], train_loss: 46.5921, valid_loss: 49.7164
Epoch [183/3000], train_loss: 47.5414, valid_loss: 49.1344
Epoch [184/3000], train_loss: 46.0906, valid_loss: 46.6167
Epoch [185/3000], train_loss: 45.6031, valid_loss: 50.1561
Epoch [186/3000], train_loss: 46.1312, valid_loss: 53.4174
Epoch [187/3000], train_loss: 47.2371, valid_loss: 49.2625
Epoch [188/3000], train_loss: 45.3723, valid_loss: 50.7213
Epoch [189/3000], train_loss: 44.5751, valid_loss: 48.1356
Epoch [190/3000], train_loss: 44.0887, valid_loss: 46.4954
Epoch [191/3000], train_loss: 44.0462, valid_loss: 46.2922
Epoch [192/3000], train_loss: 43.9364, valid_loss: 47.4322
Epoch [193/3000], train_loss: 43.5470, valid_loss: 48.0617
Epoch [194/3000], train_loss: 42.7695, valid_loss: 48.1679
Epoch [195/3000], train_loss: 42.6281, valid_loss: 43.5832
Save model at epoch 195 with loss 43.5832
Epoch [196/3000], train_loss: 42.4978, valid_loss: 44.6383
Epoch [197/3000], train_loss: 42.0846, valid_loss: 45.5380
Epoch [198/3000], train_loss: 40.9583, valid_loss: 44.3331
Epoch [199/3000], train_loss: 40.8569, valid_loss: 44.7084
Epoch [200/3000], train_loss: 40.4596, valid_loss: 42.0210
Save model at epoch 200 with loss 42.0210
Epoch [201/3000], train_loss: 40.8541, valid_loss: 40.6660
Save model at epoch 201 with loss 40.6660
Epoch [202/3000], train_loss: 39.9424, valid_loss: 44.3638
Epoch [203/3000], train_loss: 40.4781, valid_loss: 45.8559
Epoch [204/3000], train_loss: 40.3428, valid_loss: 42.6827
Epoch [205/3000], train_loss: 39.1516, valid_loss: 42.1195
Epoch [206/3000], train_loss: 39.8070, valid_loss: 42.6838
Epoch [207/3000], train_loss: 40.6520, valid_loss: 42.6091
Epoch [208/3000], train_loss: 38.6284, valid_loss: 42.6458
Epoch [209/3000], train_loss: 37.6779, valid_loss: 39.7389
Save model at epoch 209 with loss 39.7389
Epoch [210/3000], train_loss: 38.8176, valid_loss: 40.4916
Epoch [211/3000], train_loss: 37.7041, valid_loss: 39.7395
Epoch [212/3000], train_loss: 37.1442, valid_loss: 42.2820
Epoch [213/3000], train_loss: 37.1187, valid_loss: 39.1718
Save model at epoch 213 with loss 39.1718
Epoch [214/3000], train_loss: 36.9795, valid_loss: 37.8334
Save model at epoch 214 with loss 37.8334
Epoch [215/3000], train_loss: 36.5140, valid_loss: 37.0789
Save model at epoch 215 with loss 37.0789
Epoch [216/3000], train_loss: 36.6133, valid_loss: 38.0154
Epoch [217/3000], train_loss: 37.0377, valid_loss: 40.3011
Epoch [218/3000], train_loss: 35.8128, valid_loss: 39.7956
Epoch [219/3000], train_loss: 35.1184, valid_loss: 38.4814
Epoch [220/3000], train_loss: 35.5337, valid_loss: 37.3600
Epoch [221/3000], train_loss: 34.6493, valid_loss: 36.9677
Save model at epoch 221 with loss 36.9677
Epoch [222/3000], train_loss: 35.7183, valid_loss: 34.7610
Save model at epoch 222 with loss 34.7610
Epoch [223/3000], train_loss: 35.5875, valid_loss: 37.6396
Epoch [224/3000], train_loss: 34.4198, valid_loss: 37.4016
Epoch [225/3000], train_loss: 33.3776, valid_loss: 38.3435
Epoch [226/3000], train_loss: 33.3551, valid_loss: 38.6618
Epoch [227/3000], train_loss: 33.0973, valid_loss: 38.2442
Epoch [228/3000], train_loss: 33.1954, valid_loss: 37.9092
Epoch [229/3000], train_loss: 33.2633, valid_loss: 34.4034
Save model at epoch 229 with loss 34.4034
Epoch [230/3000], train_loss: 32.4083, valid_loss: 34.4970
Epoch [231/3000], train_loss: 32.3498, valid_loss: 34.7069
Epoch [232/3000], train_loss: 32.4885, valid_loss: 34.6788
Epoch [233/3000], train_loss: 31.9173, valid_loss: 36.9387
Epoch [234/3000], train_loss: 32.2846, valid_loss: 38.7241
Epoch [235/3000], train_loss: 31.7357, valid_loss: 35.5725
Epoch [236/3000], train_loss: 31.4687, valid_loss: 34.5966
Epoch [237/3000], train_loss: 31.2430, valid_loss: 34.7193
Epoch [238/3000], train_loss: 30.8314, valid_loss: 34.5142
Epoch [239/3000], train_loss: 31.1997, valid_loss: 34.9990
Epoch [240/3000], train_loss: 29.9407, valid_loss: 34.2096
Save model at epoch 240 with loss 34.2096
Epoch [241/3000], train_loss: 30.6588, valid_loss: 32.2398
Save model at epoch 241 with loss 32.2398
Epoch [242/3000], train_loss: 29.6424, valid_loss: 30.7998
Save model at epoch 242 with loss 30.7998
Epoch [243/3000], train_loss: 29.4372, valid_loss: 32.3020
Epoch [244/3000], train_loss: 29.8568, valid_loss: 33.4458
Epoch [245/3000], train_loss: 29.2109, valid_loss: 29.7223
Save model at epoch 245 with loss 29.7223
Epoch [246/3000], train_loss: 28.7886, valid_loss: 29.6441
Save model at epoch 246 with loss 29.6441
Epoch [247/3000], train_loss: 29.5827, valid_loss: 34.7528
Epoch [248/3000], train_loss: 28.9562, valid_loss: 33.2441
Epoch [249/3000], train_loss: 28.2854, valid_loss: 33.1572
Epoch [250/3000], train_loss: 28.8587, valid_loss: 30.6991
Epoch [251/3000], train_loss: 28.7662, valid_loss: 35.5481
Epoch [252/3000], train_loss: 28.0499, valid_loss: 29.2952
Save model at epoch 252 with loss 29.2952
Epoch [253/3000], train_loss: 28.5167, valid_loss: 31.4255
Epoch [254/3000], train_loss: 27.4657, valid_loss: 30.5906
Epoch [255/3000], train_loss: 27.1919, valid_loss: 27.6452
Save model at epoch 255 with loss 27.6452
Epoch [256/3000], train_loss: 27.1269, valid_loss: 31.2280
Epoch [257/3000], train_loss: 27.2889, valid_loss: 27.7559
Epoch [258/3000], train_loss: 26.7266, valid_loss: 28.1817
Epoch [259/3000], train_loss: 27.1287, valid_loss: 31.7911
Epoch [260/3000], train_loss: 26.6509, valid_loss: 28.3721
Epoch [261/3000], train_loss: 26.4960, valid_loss: 28.8733
Epoch [262/3000], train_loss: 25.9518, valid_loss: 28.8434
Epoch [263/3000], train_loss: 25.8977, valid_loss: 30.7447
Epoch [264/3000], train_loss: 25.7661, valid_loss: 25.0389
Save model at epoch 264 with loss 25.0389
Epoch [265/3000], train_loss: 25.7115, valid_loss: 27.8364
Epoch [266/3000], train_loss: 25.3538, valid_loss: 26.2311
Epoch [267/3000], train_loss: 25.4233, valid_loss: 26.0693
Epoch [268/3000], train_loss: 24.6712, valid_loss: 27.7241
Epoch [269/3000], train_loss: 24.6766, valid_loss: 27.6613
Epoch [270/3000], train_loss: 24.7760, valid_loss: 25.1794
Epoch [271/3000], train_loss: 24.1621, valid_loss: 27.7474
Epoch [272/3000], train_loss: 24.3259, valid_loss: 26.2758
Epoch [273/3000], train_loss: 24.0324, valid_loss: 24.8452
Save model at epoch 273 with loss 24.8452
Epoch [274/3000], train_loss: 23.9658, valid_loss: 25.8899
Epoch [275/3000], train_loss: 23.7692, valid_loss: 25.9323
Epoch [276/3000], train_loss: 23.9613, valid_loss: 24.3937
Save model at epoch 276 with loss 24.3937
Epoch [277/3000], train_loss: 23.9490, valid_loss: 28.5803
Epoch [278/3000], train_loss: 23.4111, valid_loss: 25.0562
Epoch [279/3000], train_loss: 22.8219, valid_loss: 24.8273
Epoch [280/3000], train_loss: 23.0853, valid_loss: 23.0868
Save model at epoch 280 with loss 23.0868
Epoch [281/3000], train_loss: 22.6869, valid_loss: 21.0552
Save model at epoch 281 with loss 21.0552
Epoch [282/3000], train_loss: 22.1655, valid_loss: 24.2188
Epoch [283/3000], train_loss: 23.3839, valid_loss: 24.4388
Epoch [284/3000], train_loss: 22.8050, valid_loss: 23.9438
Epoch [285/3000], train_loss: 22.0138, valid_loss: 22.8269
Epoch [286/3000], train_loss: 22.4008, valid_loss: 24.1586
Epoch [287/3000], train_loss: 22.1891, valid_loss: 24.2401
Epoch [288/3000], train_loss: 22.5873, valid_loss: 24.4613
Epoch [289/3000], train_loss: 21.7069, valid_loss: 23.2733
Epoch [290/3000], train_loss: 21.6300, valid_loss: 24.7138
Epoch [291/3000], train_loss: 21.1014, valid_loss: 24.2064
Epoch [292/3000], train_loss: 21.4145, valid_loss: 22.6882
Epoch [293/3000], train_loss: 20.9135, valid_loss: 23.2045
Epoch [294/3000], train_loss: 20.8766, valid_loss: 21.0190
Save model at epoch 294 with loss 21.0190
Epoch [295/3000], train_loss: 20.9150, valid_loss: 24.0186
Epoch [296/3000], train_loss: 20.5961, valid_loss: 22.0745
Epoch [297/3000], train_loss: 20.1103, valid_loss: 22.7206
Epoch [298/3000], train_loss: 20.4498, valid_loss: 22.9600
Epoch [299/3000], train_loss: 20.3236, valid_loss: 20.7816
Save model at epoch 299 with loss 20.7816
Epoch [300/3000], train_loss: 20.2211, valid_loss: 22.6592
Epoch [301/3000], train_loss: 20.3298, valid_loss: 20.9793
Epoch [302/3000], train_loss: 19.6146, valid_loss: 21.6926
Epoch [303/3000], train_loss: 19.3073, valid_loss: 19.8644
Save model at epoch 303 with loss 19.8644
Epoch [304/3000], train_loss: 19.5151, valid_loss: 20.4471
Epoch [305/3000], train_loss: 18.9155, valid_loss: 20.4127
Epoch [306/3000], train_loss: 19.1480, valid_loss: 19.6332
Save model at epoch 306 with loss 19.6332
Epoch [307/3000], train_loss: 19.1742, valid_loss: 21.0139
Epoch [308/3000], train_loss: 18.5658, valid_loss: 19.8762
Epoch [309/3000], train_loss: 19.1503, valid_loss: 21.7449
Epoch [310/3000], train_loss: 18.8438, valid_loss: 19.8752
Epoch [311/3000], train_loss: 19.0271, valid_loss: 20.5729
Epoch [312/3000], train_loss: 18.3260, valid_loss: 20.3525
Epoch [313/3000], train_loss: 18.4612, valid_loss: 22.0948
Epoch [314/3000], train_loss: 18.3451, valid_loss: 20.0307
Epoch [315/3000], train_loss: 17.9039, valid_loss: 18.5415
Save model at epoch 315 with loss 18.5415
Epoch [316/3000], train_loss: 17.5965, valid_loss: 19.1511
Epoch [317/3000], train_loss: 17.7326, valid_loss: 17.9966
Save model at epoch 317 with loss 17.9966
Epoch [318/3000], train_loss: 17.6891, valid_loss: 16.9468
Save model at epoch 318 with loss 16.9468
Epoch [319/3000], train_loss: 17.2640, valid_loss: 16.9486
Epoch [320/3000], train_loss: 17.1828, valid_loss: 19.5164
Epoch [321/3000], train_loss: 17.1324, valid_loss: 16.4671
Save model at epoch 321 with loss 16.4671
Epoch [322/3000], train_loss: 16.8391, valid_loss: 16.5769
Epoch [323/3000], train_loss: 17.2174, valid_loss: 17.6120
Epoch [324/3000], train_loss: 17.3253, valid_loss: 19.0542
Epoch [325/3000], train_loss: 17.0767, valid_loss: 19.5791
Epoch [326/3000], train_loss: 16.8368, valid_loss: 18.9674
Epoch [327/3000], train_loss: 16.4783, valid_loss: 16.9065
Epoch [328/3000], train_loss: 16.7619, valid_loss: 16.8999
Epoch [329/3000], train_loss: 16.1970, valid_loss: 16.4966
Epoch [330/3000], train_loss: 15.9637, valid_loss: 16.7539
Epoch [331/3000], train_loss: 15.9168, valid_loss: 15.7167
Save model at epoch 331 with loss 15.7167
Epoch [332/3000], train_loss: 16.2752, valid_loss: 16.9736
Epoch [333/3000], train_loss: 15.8980, valid_loss: 19.8271
Epoch [334/3000], train_loss: 15.5612, valid_loss: 16.6953
Epoch [335/3000], train_loss: 15.8085, valid_loss: 15.1529
Save model at epoch 335 with loss 15.1529
Epoch [336/3000], train_loss: 15.0833, valid_loss: 16.3495
Epoch [337/3000], train_loss: 15.3565, valid_loss: 17.0899
Epoch [338/3000], train_loss: 14.9281, valid_loss: 15.1916
Epoch [339/3000], train_loss: 14.9495, valid_loss: 17.3998
Epoch [340/3000], train_loss: 14.9180, valid_loss: 15.7117
Epoch [341/3000], train_loss: 15.8245, valid_loss: 15.1888
Epoch [342/3000], train_loss: 14.6130, valid_loss: 14.9607
Save model at epoch 342 with loss 14.9607
Epoch [343/3000], train_loss: 14.4636, valid_loss: 14.4393
Save model at epoch 343 with loss 14.4393
Epoch [344/3000], train_loss: 14.5752, valid_loss: 14.7321
Epoch [345/3000], train_loss: 14.5316, valid_loss: 16.8238
Epoch [346/3000], train_loss: 14.2919, valid_loss: 15.9079
Epoch [347/3000], train_loss: 14.0805, valid_loss: 14.3610
Save model at epoch 347 with loss 14.3610
Epoch [348/3000], train_loss: 14.6030, valid_loss: 15.0350
Epoch [349/3000], train_loss: 14.6262, valid_loss: 14.9785
Epoch [350/3000], train_loss: 14.0475, valid_loss: 13.5639
Save model at epoch 350 with loss 13.5639
Epoch [351/3000], train_loss: 13.8144, valid_loss: 13.8175
Epoch [352/3000], train_loss: 13.7548, valid_loss: 14.4437
Epoch [353/3000], train_loss: 14.1247, valid_loss: 13.6140
Epoch [354/3000], train_loss: 13.0813, valid_loss: 14.3676
Epoch [355/3000], train_loss: 13.5216, valid_loss: 14.4813
Epoch [356/3000], train_loss: 13.5596, valid_loss: 14.3970
Epoch [357/3000], train_loss: 13.3861, valid_loss: 14.4291
Epoch [358/3000], train_loss: 13.0462, valid_loss: 13.4996
Save model at epoch 358 with loss 13.4996
Epoch [359/3000], train_loss: 13.4821, valid_loss: 13.7332
Epoch [360/3000], train_loss: 13.0010, valid_loss: 12.8137
Save model at epoch 360 with loss 12.8137
Epoch [361/3000], train_loss: 13.2194, valid_loss: 13.6287
Epoch [362/3000], train_loss: 13.0679, valid_loss: 14.1793
Epoch [363/3000], train_loss: 13.0882, valid_loss: 13.5921
Epoch [364/3000], train_loss: 12.3253, valid_loss: 12.2139
Save model at epoch 364 with loss 12.2139
Epoch [365/3000], train_loss: 12.5287, valid_loss: 12.8511
Epoch [366/3000], train_loss: 12.3937, valid_loss: 13.7131
Epoch [367/3000], train_loss: 12.7380, valid_loss: 12.3571
Epoch [368/3000], train_loss: 12.1713, valid_loss: 14.3714
Epoch [369/3000], train_loss: 12.0989, valid_loss: 12.2772
Epoch [370/3000], train_loss: 11.8697, valid_loss: 12.5334
Epoch [371/3000], train_loss: 11.7762, valid_loss: 12.3503
Epoch [372/3000], train_loss: 11.7588, valid_loss: 12.0269
Save model at epoch 372 with loss 12.0269
Epoch [373/3000], train_loss: 11.5642, valid_loss: 12.6937
Epoch [374/3000], train_loss: 11.4716, valid_loss: 11.7217
Save model at epoch 374 with loss 11.7217
Epoch [375/3000], train_loss: 11.8385, valid_loss: 12.3224
Epoch [376/3000], train_loss: 11.5529, valid_loss: 11.4269
Save model at epoch 376 with loss 11.4269
Epoch [377/3000], train_loss: 11.6204, valid_loss: 12.7029
Epoch [378/3000], train_loss: 11.6361, valid_loss: 11.8900
Epoch [379/3000], train_loss: 11.6582, valid_loss: 12.2960
Epoch [380/3000], train_loss: 11.5564, valid_loss: 11.9023
Epoch [381/3000], train_loss: 10.7989, valid_loss: 10.0794
Save model at epoch 381 with loss 10.0794
Epoch [382/3000], train_loss: 11.3682, valid_loss: 10.3191
Epoch [383/3000], train_loss: 11.0321, valid_loss: 12.2517
Epoch [384/3000], train_loss: 10.8092, valid_loss: 13.1315
Epoch [385/3000], train_loss: 10.5225, valid_loss: 10.9336
Epoch [386/3000], train_loss: 11.6088, valid_loss: 11.8472
Epoch [387/3000], train_loss: 10.6487, valid_loss: 10.4222
Epoch [388/3000], train_loss: 10.4675, valid_loss: 11.6106
Epoch [389/3000], train_loss: 10.4348, valid_loss: 10.3514
Epoch [390/3000], train_loss: 10.2803, valid_loss: 10.5355
Epoch [391/3000], train_loss: 10.1977, valid_loss: 9.8180
Save model at epoch 391 with loss 9.8180
Epoch [392/3000], train_loss: 10.2696, valid_loss: 11.3423
Epoch [393/3000], train_loss: 9.9150, valid_loss: 10.9459
Epoch [394/3000], train_loss: 9.8338, valid_loss: 8.9186
Save model at epoch 394 with loss 8.9186
Epoch [395/3000], train_loss: 10.6216, valid_loss: 11.2623
Epoch [396/3000], train_loss: 10.1057, valid_loss: 10.8265
Epoch [397/3000], train_loss: 9.6757, valid_loss: 11.0251
Epoch [398/3000], train_loss: 10.5245, valid_loss: 10.7208
Epoch [399/3000], train_loss: 9.6406, valid_loss: 9.9229
Epoch [400/3000], train_loss: 9.6978, valid_loss: 10.1002
Epoch [401/3000], train_loss: 9.8200, valid_loss: 8.9470
Epoch [402/3000], train_loss: 8.9795, valid_loss: 9.6173
Epoch [403/3000], train_loss: 9.2687, valid_loss: 9.5587
Epoch [404/3000], train_loss: 9.0120, valid_loss: 9.9631
Epoch [405/3000], train_loss: 9.0390, valid_loss: 10.0724
Epoch [406/3000], train_loss: 9.3680, valid_loss: 9.8178
Epoch [407/3000], train_loss: 8.8318, valid_loss: 9.4273
Epoch [408/3000], train_loss: 8.5898, valid_loss: 10.5179
Epoch [409/3000], train_loss: 8.9025, valid_loss: 9.4861
Epoch [410/3000], train_loss: 9.3094, valid_loss: 9.2207
Epoch [411/3000], train_loss: 9.0657, valid_loss: 10.2990
Epoch [412/3000], train_loss: 9.2404, valid_loss: 9.3301
Epoch [413/3000], train_loss: 8.6734, valid_loss: 8.5486
Save model at epoch 413 with loss 8.5486
Epoch [414/3000], train_loss: 8.9605, valid_loss: 8.1316
Save model at epoch 414 with loss 8.1316
Epoch [415/3000], train_loss: 8.9426, valid_loss: 8.1333
Epoch [416/3000], train_loss: 8.2513, valid_loss: 7.7814
Save model at epoch 416 with loss 7.7814
Epoch [417/3000], train_loss: 8.8517, valid_loss: 8.5663
Epoch [418/3000], train_loss: 8.3307, valid_loss: 8.2217
Epoch [419/3000], train_loss: 8.0059, valid_loss: 7.8922
Epoch [420/3000], train_loss: 8.8909, valid_loss: 7.7573
Save model at epoch 420 with loss 7.7573
Epoch [421/3000], train_loss: 8.5841, valid_loss: 8.2409
Epoch [422/3000], train_loss: 7.6996, valid_loss: 8.3396
Epoch [423/3000], train_loss: 8.1792, valid_loss: 7.6517
Save model at epoch 423 with loss 7.6517
Epoch [424/3000], train_loss: 8.4201, valid_loss: 8.2364
Epoch [425/3000], train_loss: 7.7032, valid_loss: 7.4905
Save model at epoch 425 with loss 7.4905
Epoch [426/3000], train_loss: 7.9748, valid_loss: 7.3524
Save model at epoch 426 with loss 7.3524
Epoch [427/3000], train_loss: 7.8658, valid_loss: 7.6072
Epoch [428/3000], train_loss: 7.7183, valid_loss: 7.3604
Epoch [429/3000], train_loss: 7.6028, valid_loss: 6.8778
Save model at epoch 429 with loss 6.8778
Epoch [430/3000], train_loss: 7.6117, valid_loss: 7.1417
Epoch [431/3000], train_loss: 7.4273, valid_loss: 7.9063
Epoch [432/3000], train_loss: 7.4531, valid_loss: 6.8251
Save model at epoch 432 with loss 6.8251
Epoch [433/3000], train_loss: 7.5925, valid_loss: 8.1135
Epoch [434/3000], train_loss: 7.3048, valid_loss: 7.0983
Epoch [435/3000], train_loss: 7.2222, valid_loss: 6.9534
Epoch [436/3000], train_loss: 7.2127, valid_loss: 6.8135
Save model at epoch 436 with loss 6.8135
Epoch [437/3000], train_loss: 7.2121, valid_loss: 7.5065
Epoch [438/3000], train_loss: 7.1896, valid_loss: 7.0161
Epoch [439/3000], train_loss: 7.2970, valid_loss: 7.4038
Epoch [440/3000], train_loss: 7.2746, valid_loss: 7.0870
Epoch [441/3000], train_loss: 6.9636, valid_loss: 6.7659
Save model at epoch 441 with loss 6.7659
Epoch [442/3000], train_loss: 7.0330, valid_loss: 6.6155
Save model at epoch 442 with loss 6.6155
Epoch [443/3000], train_loss: 7.2872, valid_loss: 6.2196
Save model at epoch 443 with loss 6.2196
Epoch [444/3000], train_loss: 6.6180, valid_loss: 6.6946
Epoch [445/3000], train_loss: 6.8308, valid_loss: 6.8692
Epoch [446/3000], train_loss: 6.3433, valid_loss: 6.8782
Epoch [447/3000], train_loss: 6.9233, valid_loss: 5.9583
Save model at epoch 447 with loss 5.9583
Epoch [448/3000], train_loss: 6.5358, valid_loss: 7.1327
Epoch [449/3000], train_loss: 6.7866, valid_loss: 6.6068
Epoch [450/3000], train_loss: 6.5170, valid_loss: 6.3064
Epoch [451/3000], train_loss: 6.3133, valid_loss: 6.1815
Epoch [452/3000], train_loss: 6.4495, valid_loss: 5.8384
Save model at epoch 452 with loss 5.8384
Epoch [453/3000], train_loss: 6.3243, valid_loss: 6.1869
Epoch [454/3000], train_loss: 6.3914, valid_loss: 5.7210
Save model at epoch 454 with loss 5.7210
Epoch [455/3000], train_loss: 6.4339, valid_loss: 6.2698
Epoch [456/3000], train_loss: 6.2640, valid_loss: 6.2369
Epoch [457/3000], train_loss: 6.3955, valid_loss: 5.4040
Save model at epoch 457 with loss 5.4040
Epoch [458/3000], train_loss: 5.9724, valid_loss: 6.1047
Epoch [459/3000], train_loss: 6.0954, valid_loss: 5.9481
Epoch [460/3000], train_loss: 6.0062, valid_loss: 5.9452
Epoch [461/3000], train_loss: 6.0141, valid_loss: 5.9864
Epoch [462/3000], train_loss: 6.3069, valid_loss: 5.7081
Epoch [463/3000], train_loss: 5.9967, valid_loss: 5.3474
Save model at epoch 463 with loss 5.3474
Epoch [464/3000], train_loss: 5.7899, valid_loss: 5.5801
Epoch [465/3000], train_loss: 5.8072, valid_loss: 5.2555
Save model at epoch 465 with loss 5.2555
Epoch [466/3000], train_loss: 6.1245, valid_loss: 4.8209
Save model at epoch 466 with loss 4.8209
Epoch [467/3000], train_loss: 5.5779, valid_loss: 5.4585
Epoch [468/3000], train_loss: 6.1596, valid_loss: 4.8669
Epoch [469/3000], train_loss: 5.9678, valid_loss: 5.2497
Epoch [470/3000], train_loss: 6.1651, valid_loss: 4.5582
Save model at epoch 470 with loss 4.5582
Epoch [471/3000], train_loss: 5.4973, valid_loss: 5.2719
Epoch [472/3000], train_loss: 5.7136, valid_loss: 4.5579
Save model at epoch 472 with loss 4.5579
Epoch [473/3000], train_loss: 5.5482, valid_loss: 5.5438
Epoch [474/3000], train_loss: 5.6943, valid_loss: 4.8685
Epoch [475/3000], train_loss: 5.5733, valid_loss: 5.2196
Epoch [476/3000], train_loss: 5.2600, valid_loss: 4.6695
Epoch [477/3000], train_loss: 5.3936, valid_loss: 5.7210
Epoch [478/3000], train_loss: 5.3713, valid_loss: 4.9041
Epoch [479/3000], train_loss: 5.2774, valid_loss: 4.8763
Epoch [480/3000], train_loss: 5.2520, valid_loss: 4.8370
Epoch [481/3000], train_loss: 5.3514, valid_loss: 4.5817
Epoch [482/3000], train_loss: 5.2386, valid_loss: 5.4290
Epoch [483/3000], train_loss: 5.5448, valid_loss: 4.4739
Save model at epoch 483 with loss 4.4739
Epoch [484/3000], train_loss: 5.2942, valid_loss: 4.3961
Save model at epoch 484 with loss 4.3961
Epoch [485/3000], train_loss: 5.6434, valid_loss: 4.1755
Save model at epoch 485 with loss 4.1755
Epoch [486/3000], train_loss: 5.1696, valid_loss: 4.5617
Epoch [487/3000], train_loss: 5.6601, valid_loss: 4.9195
Epoch [488/3000], train_loss: 5.0272, valid_loss: 4.2414
Epoch [489/3000], train_loss: 5.0095, valid_loss: 4.5565
Epoch [490/3000], train_loss: 5.0918, valid_loss: 5.0330
Epoch [491/3000], train_loss: 5.0770, valid_loss: 4.0364
Save model at epoch 491 with loss 4.0364
Epoch [492/3000], train_loss: 4.6294, valid_loss: 4.4911
Epoch [493/3000], train_loss: 4.6592, valid_loss: 5.3571
Epoch [494/3000], train_loss: 4.8015, valid_loss: 4.3220
Epoch [495/3000], train_loss: 5.2263, valid_loss: 4.0054
Save model at epoch 495 with loss 4.0054
Epoch [496/3000], train_loss: 5.0947, valid_loss: 4.6748
Epoch [497/3000], train_loss: 4.7107, valid_loss: 3.7469
Save model at epoch 497 with loss 3.7469
Epoch [498/3000], train_loss: 4.9133, valid_loss: 4.2347
Epoch [499/3000], train_loss: 4.7873, valid_loss: 3.7835
Epoch [500/3000], train_loss: 4.9576, valid_loss: 4.7676
Epoch [501/3000], train_loss: 4.7156, valid_loss: 4.2729
Epoch [502/3000], train_loss: 4.7307, valid_loss: 3.9118
Epoch [503/3000], train_loss: 4.6509, valid_loss: 4.4292
Epoch [504/3000], train_loss: 4.7621, valid_loss: 3.8531
Epoch [505/3000], train_loss: 5.3312, valid_loss: 4.1102
Epoch [506/3000], train_loss: 4.4486, valid_loss: 3.6613
Save model at epoch 506 with loss 3.6613
Epoch [507/3000], train_loss: 4.4440, valid_loss: 4.0548
Epoch [508/3000], train_loss: 4.3715, valid_loss: 3.8659
Epoch [509/3000], train_loss: 4.7258, valid_loss: 3.7283
Epoch [510/3000], train_loss: 4.1733, valid_loss: 3.4206
Save model at epoch 510 with loss 3.4206
Epoch [511/3000], train_loss: 4.2755, valid_loss: 3.7753
Epoch [512/3000], train_loss: 4.5454, valid_loss: 3.9645
Epoch [513/3000], train_loss: 4.3723, valid_loss: 3.5749
Epoch [514/3000], train_loss: 4.6955, valid_loss: 3.4584
Epoch [515/3000], train_loss: 4.3437, valid_loss: 3.9729
Epoch [516/3000], train_loss: 4.4107, valid_loss: 3.7339
Epoch [517/3000], train_loss: 4.2524, valid_loss: 3.7213
Epoch [518/3000], train_loss: 4.7643, valid_loss: 3.3312
Save model at epoch 518 with loss 3.3312
Epoch [519/3000], train_loss: 4.2070, valid_loss: 3.5706
Epoch [520/3000], train_loss: 4.1614, valid_loss: 3.0374
Save model at epoch 520 with loss 3.0374
Epoch [521/3000], train_loss: 4.1150, valid_loss: 3.2976
Epoch [522/3000], train_loss: 4.0469, valid_loss: 3.8626
Epoch [523/3000], train_loss: 4.1446, valid_loss: 3.1678
Epoch [524/3000], train_loss: 4.1847, valid_loss: 2.9761
Save model at epoch 524 with loss 2.9761
Epoch [525/3000], train_loss: 4.2788, valid_loss: 4.3632
Epoch [526/3000], train_loss: 4.2572, valid_loss: 3.7291
Epoch [527/3000], train_loss: 4.3660, valid_loss: 3.4724
Epoch [528/3000], train_loss: 4.1369, valid_loss: 3.2072
Epoch [529/3000], train_loss: 4.0789, valid_loss: 3.4228
Epoch [530/3000], train_loss: 4.2543, valid_loss: 3.6048
Epoch [531/3000], train_loss: 4.3495, valid_loss: 3.0345
Epoch [532/3000], train_loss: 4.2354, valid_loss: 3.4482
Epoch [533/3000], train_loss: 4.1984, valid_loss: 3.5241
Epoch [534/3000], train_loss: 4.2205, valid_loss: 3.4824
Epoch [535/3000], train_loss: 4.0939, valid_loss: 3.3472
Epoch [536/3000], train_loss: 3.6870, valid_loss: 3.6086
Epoch [537/3000], train_loss: 3.9134, valid_loss: 2.7410
Save model at epoch 537 with loss 2.7410
Epoch [538/3000], train_loss: 3.5313, valid_loss: 3.1787
Epoch [539/3000], train_loss: 3.6616, valid_loss: 3.0456
Epoch [540/3000], train_loss: 3.9273, valid_loss: 3.0952
Epoch [541/3000], train_loss: 4.1920, valid_loss: 2.7938
Epoch [542/3000], train_loss: 3.8291, valid_loss: 3.1703
Epoch [543/3000], train_loss: 3.9260, valid_loss: 3.1691
Epoch [544/3000], train_loss: 3.7631, valid_loss: 2.7369
Save model at epoch 544 with loss 2.7369
Epoch [545/3000], train_loss: 3.8491, valid_loss: 3.2395
Epoch [546/3000], train_loss: 3.7851, valid_loss: 3.7860
Epoch [547/3000], train_loss: 3.6955, valid_loss: 3.1433
Epoch [548/3000], train_loss: 4.2189, valid_loss: 3.2975
Epoch [549/3000], train_loss: 4.2481, valid_loss: 3.1775
Epoch [550/3000], train_loss: 3.5630, valid_loss: 2.9807
Epoch [551/3000], train_loss: 3.7135, valid_loss: 3.2221
Epoch [552/3000], train_loss: 3.6909, valid_loss: 2.7278
Save model at epoch 552 with loss 2.7278
Epoch [553/3000], train_loss: 3.6474, valid_loss: 3.5093
Epoch [554/3000], train_loss: 4.0756, valid_loss: 3.5200
Epoch [555/3000], train_loss: 3.4822, valid_loss: 2.8081
Epoch [556/3000], train_loss: 3.6754, valid_loss: 3.0489
Epoch [557/3000], train_loss: 3.7849, valid_loss: 2.9298
Epoch [558/3000], train_loss: 4.0913, valid_loss: 2.7984
Epoch [559/3000], train_loss: 3.3838, valid_loss: 3.1054
Epoch [560/3000], train_loss: 3.8259, valid_loss: 2.6267
Save model at epoch 560 with loss 2.6267
Epoch [561/3000], train_loss: 3.6827, valid_loss: 2.7430
Epoch [562/3000], train_loss: 3.7462, valid_loss: 2.9954
Epoch [563/3000], train_loss: 3.5902, valid_loss: 3.1458
Epoch [564/3000], train_loss: 3.8507, valid_loss: 2.6183
Save model at epoch 564 with loss 2.6183
Epoch [565/3000], train_loss: 3.7270, valid_loss: 2.4635
Save model at epoch 565 with loss 2.4635
Epoch [566/3000], train_loss: 3.8513, valid_loss: 2.4863
Epoch [567/3000], train_loss: 3.4641, valid_loss: 2.3847
Save model at epoch 567 with loss 2.3847
Epoch [568/3000], train_loss: 3.7649, valid_loss: 3.6550
Epoch [569/3000], train_loss: 3.4937, valid_loss: 2.6997
Epoch [570/3000], train_loss: 3.7460, valid_loss: 2.6553
Epoch [571/3000], train_loss: 3.5043, valid_loss: 2.4702
Epoch [572/3000], train_loss: 3.4464, valid_loss: 2.4500
Epoch [573/3000], train_loss: 3.4205, valid_loss: 2.6908
Epoch [574/3000], train_loss: 3.3848, valid_loss: 2.7786
Epoch [575/3000], train_loss: 3.3991, valid_loss: 2.6016
Epoch [576/3000], train_loss: 3.4104, valid_loss: 2.9526
Epoch [577/3000], train_loss: 3.7217, valid_loss: 2.9444
Epoch [578/3000], train_loss: 3.4974, valid_loss: 3.0084
Epoch [579/3000], train_loss: 3.6424, valid_loss: 2.4543
Epoch [580/3000], train_loss: 3.6057, valid_loss: 2.7147
Epoch [581/3000], train_loss: 3.5504, valid_loss: 2.8464
Epoch [582/3000], train_loss: 3.4568, valid_loss: 2.8279
Epoch [583/3000], train_loss: 3.8781, valid_loss: 2.4673
Epoch [584/3000], train_loss: 3.3715, valid_loss: 2.7339
Epoch [585/3000], train_loss: 3.5452, valid_loss: 2.5371
Epoch [586/3000], train_loss: 3.6846, valid_loss: 2.5217
Epoch [587/3000], train_loss: 3.4544, valid_loss: 2.5521
Epoch [588/3000], train_loss: 3.6317, valid_loss: 2.3845
Save model at epoch 588 with loss 2.3845
Epoch [589/3000], train_loss: 3.5252, valid_loss: 2.3454
Save model at epoch 589 with loss 2.3454
Epoch [590/3000], train_loss: 3.5651, valid_loss: 2.5682
Epoch [591/3000], train_loss: 3.3035, valid_loss: 2.6118
Epoch [592/3000], train_loss: 3.3915, valid_loss: 2.2140
Save model at epoch 592 with loss 2.2140
Epoch [593/3000], train_loss: 3.4665, valid_loss: 2.8103
Epoch [594/3000], train_loss: 3.2082, valid_loss: 2.5197
Epoch [595/3000], train_loss: 3.4256, valid_loss: 2.2972
Epoch [596/3000], train_loss: 3.7026, valid_loss: 2.5857
Epoch [597/3000], train_loss: 3.4043, valid_loss: 2.8537
Epoch [598/3000], train_loss: 3.6070, valid_loss: 2.5649
Epoch [599/3000], train_loss: 3.2713, valid_loss: 2.5270
Epoch [600/3000], train_loss: 3.3736, valid_loss: 2.8518
Epoch [601/3000], train_loss: 3.5619, valid_loss: 2.6703
Epoch [602/3000], train_loss: 3.4932, valid_loss: 2.3752
Epoch [603/3000], train_loss: 3.4888, valid_loss: 2.4790
Epoch [604/3000], train_loss: 3.0665, valid_loss: 2.4543
Epoch [605/3000], train_loss: 3.2808, valid_loss: 2.6313
Epoch [606/3000], train_loss: 3.3446, valid_loss: 2.3982
Epoch [607/3000], train_loss: 3.5765, valid_loss: 2.7046
Epoch [608/3000], train_loss: 3.8675, valid_loss: 2.2377
Epoch [609/3000], train_loss: 3.4639, valid_loss: 2.2851
Epoch [610/3000], train_loss: 3.7356, valid_loss: 2.4351
Epoch [611/3000], train_loss: 3.4773, valid_loss: 2.2484
Epoch [612/3000], train_loss: 3.3169, valid_loss: 2.1422
Save model at epoch 612 with loss 2.1422
Epoch [613/3000], train_loss: 3.1594, valid_loss: 2.4079
Epoch [614/3000], train_loss: 3.2248, valid_loss: 2.2393
Epoch [615/3000], train_loss: 3.3373, valid_loss: 2.2485
Epoch [616/3000], train_loss: 3.2391, valid_loss: 2.5508
Epoch [617/3000], train_loss: 3.5476, valid_loss: 2.1843
Epoch [618/3000], train_loss: 2.9884, valid_loss: 2.3729
Epoch [619/3000], train_loss: 3.3507, valid_loss: 2.1228
Save model at epoch 619 with loss 2.1228
Epoch [620/3000], train_loss: 3.3320, valid_loss: 2.3701
Epoch [621/3000], train_loss: 3.3206, valid_loss: 3.3088
Epoch [622/3000], train_loss: 3.2415, valid_loss: 2.6153
Epoch [623/3000], train_loss: 3.8212, valid_loss: 2.2051
Epoch [624/3000], train_loss: 3.2328, valid_loss: 2.6790
Epoch [625/3000], train_loss: 3.2374, valid_loss: 3.2584
Epoch [626/3000], train_loss: 3.0588, valid_loss: 2.1973
Epoch [627/3000], train_loss: 2.9911, valid_loss: 2.2250
Epoch [628/3000], train_loss: 3.3597, valid_loss: 2.3268
Epoch [629/3000], train_loss: 3.1602, valid_loss: 2.0824
Save model at epoch 629 with loss 2.0824
Epoch [630/3000], train_loss: 3.6157, valid_loss: 2.0596
Save model at epoch 630 with loss 2.0596
Epoch [631/3000], train_loss: 3.0749, valid_loss: 2.5412
Epoch [632/3000], train_loss: 3.2250, valid_loss: 2.5216
Epoch [633/3000], train_loss: 3.3260, valid_loss: 2.3777
Epoch [634/3000], train_loss: 3.6514, valid_loss: 2.0663
Epoch [635/3000], train_loss: 3.6888, valid_loss: 2.3105
Epoch [636/3000], train_loss: 3.3425, valid_loss: 2.0914
Epoch [637/3000], train_loss: 3.5550, valid_loss: 2.5149
Epoch [638/3000], train_loss: 3.0380, valid_loss: 2.6412
Epoch [639/3000], train_loss: 3.3545, valid_loss: 2.5079
Epoch [640/3000], train_loss: 3.8564, valid_loss: 2.0473
Save model at epoch 640 with loss 2.0473
Epoch [641/3000], train_loss: 3.2090, valid_loss: 2.2712
Epoch [642/3000], train_loss: 3.2078, valid_loss: 2.0286
Save model at epoch 642 with loss 2.0286
Epoch [643/3000], train_loss: 3.1505, valid_loss: 2.6372
Epoch [644/3000], train_loss: 3.0053, valid_loss: 2.7705
Epoch [645/3000], train_loss: 3.4688, valid_loss: 2.0387
Epoch [646/3000], train_loss: 3.2146, valid_loss: 2.1626
Epoch [647/3000], train_loss: 3.1349, valid_loss: 2.1299
Epoch [648/3000], train_loss: 3.5413, valid_loss: 1.9951
Save model at epoch 648 with loss 1.9951
Epoch [649/3000], train_loss: 3.3056, valid_loss: 2.2592
Epoch [650/3000], train_loss: 3.2960, valid_loss: 1.8571
Save model at epoch 650 with loss 1.8571
Epoch [651/3000], train_loss: 2.9616, valid_loss: 2.1324
Epoch [652/3000], train_loss: 3.1131, valid_loss: 2.8273
Epoch [653/3000], train_loss: 3.2308, valid_loss: 2.3826
Epoch [654/3000], train_loss: 3.1060, valid_loss: 2.4532
Epoch [655/3000], train_loss: 2.9911, valid_loss: 2.1808
Epoch [656/3000], train_loss: 3.0181, valid_loss: 2.1323
Epoch [657/3000], train_loss: 3.2514, valid_loss: 2.1350
Epoch [658/3000], train_loss: 3.1513, valid_loss: 2.1919
Epoch [659/3000], train_loss: 2.9643, valid_loss: 2.3473
Epoch [660/3000], train_loss: 3.2161, valid_loss: 2.3760
Epoch [661/3000], train_loss: 3.4850, valid_loss: 2.2103
Epoch [662/3000], train_loss: 3.0287, valid_loss: 1.7879
Save model at epoch 662 with loss 1.7879
Epoch [663/3000], train_loss: 3.0975, valid_loss: 2.1409
Epoch [664/3000], train_loss: 3.1418, valid_loss: 2.2395
Epoch [665/3000], train_loss: 3.4812, valid_loss: 2.1949
Epoch [666/3000], train_loss: 3.3264, valid_loss: 2.0730
Epoch [667/3000], train_loss: 3.4318, valid_loss: 2.0887
Epoch [668/3000], train_loss: 3.2469, valid_loss: 1.9538
Epoch [669/3000], train_loss: 3.1776, valid_loss: 2.1768
Epoch [670/3000], train_loss: 3.4656, valid_loss: 2.5195
Epoch [671/3000], train_loss: 2.9943, valid_loss: 2.4381
Epoch [672/3000], train_loss: 3.2986, valid_loss: 2.3256
Epoch [673/3000], train_loss: 3.2104, valid_loss: 2.4751
Epoch [674/3000], train_loss: 3.1899, valid_loss: 2.0252
Epoch [675/3000], train_loss: 3.4970, valid_loss: 2.0737
Epoch [676/3000], train_loss: 3.2773, valid_loss: 2.0069
Epoch [677/3000], train_loss: 3.1178, valid_loss: 1.8919
Epoch [678/3000], train_loss: 3.1930, valid_loss: 2.5538
Epoch [679/3000], train_loss: 2.9576, valid_loss: 1.7897
Epoch [680/3000], train_loss: 3.1907, valid_loss: 2.5404
Epoch [681/3000], train_loss: 3.1159, valid_loss: 2.1034
Epoch [682/3000], train_loss: 2.9343, valid_loss: 2.0956
Epoch [683/3000], train_loss: 3.2754, valid_loss: 2.1718
Epoch [684/3000], train_loss: 3.0902, valid_loss: 2.0416
Epoch [685/3000], train_loss: 3.3043, valid_loss: 2.0294
Epoch [686/3000], train_loss: 2.9668, valid_loss: 2.1526
Epoch [687/3000], train_loss: 3.0913, valid_loss: 2.1789
Epoch [688/3000], train_loss: 3.0584, valid_loss: 2.2747
Epoch [689/3000], train_loss: 3.1772, valid_loss: 1.9139
Epoch [690/3000], train_loss: 2.8891, valid_loss: 2.1570
Epoch [691/3000], train_loss: 3.0982, valid_loss: 2.1705
Epoch [692/3000], train_loss: 3.1729, valid_loss: 2.3773
Epoch [693/3000], train_loss: 3.2241, valid_loss: 1.9952
Epoch [694/3000], train_loss: 3.0129, valid_loss: 1.7508
Save model at epoch 694 with loss 1.7508
Epoch [695/3000], train_loss: 2.8278, valid_loss: 2.3692
Epoch [696/3000], train_loss: 3.2394, valid_loss: 2.4467
Epoch [697/3000], train_loss: 3.0604, valid_loss: 2.1927
Epoch [698/3000], train_loss: 2.9349, valid_loss: 1.7927
Epoch [699/3000], train_loss: 3.0609, valid_loss: 2.3340
Epoch [700/3000], train_loss: 3.0617, valid_loss: 2.4609
Epoch [701/3000], train_loss: 3.0820, valid_loss: 1.9945
Epoch [702/3000], train_loss: 3.0981, valid_loss: 2.2572
Epoch [703/3000], train_loss: 3.0606, valid_loss: 2.1414
Epoch [704/3000], train_loss: 3.2532, valid_loss: 2.6410
Epoch [705/3000], train_loss: 3.2186, valid_loss: 2.2118
Epoch [706/3000], train_loss: 2.9537, valid_loss: 2.2769
Epoch [707/3000], train_loss: 2.9943, valid_loss: 1.9269
Epoch [708/3000], train_loss: 2.8406, valid_loss: 2.2452
Epoch [709/3000], train_loss: 3.3586, valid_loss: 2.0501
Epoch [710/3000], train_loss: 2.9238, valid_loss: 2.1393
Epoch [711/3000], train_loss: 3.1225, valid_loss: 1.9631
Epoch [712/3000], train_loss: 3.2096, valid_loss: 2.2211
Epoch [713/3000], train_loss: 2.8889, valid_loss: 2.4276
Epoch [714/3000], train_loss: 3.2083, valid_loss: 1.9814
Epoch [715/3000], train_loss: 3.3679, valid_loss: 1.8102
Epoch [716/3000], train_loss: 3.0360, valid_loss: 2.2034
Epoch [717/3000], train_loss: 3.0696, valid_loss: 2.0536
Epoch [718/3000], train_loss: 3.0861, valid_loss: 2.0861
Epoch [719/3000], train_loss: 3.2688, valid_loss: 2.1126
Epoch [720/3000], train_loss: 3.0740, valid_loss: 2.1819
Epoch [721/3000], train_loss: 3.0979, valid_loss: 2.0717
Epoch [722/3000], train_loss: 3.4194, valid_loss: 1.9959
Epoch [723/3000], train_loss: 3.5010, valid_loss: 2.5011
Epoch [724/3000], train_loss: 3.0305, valid_loss: 1.8650
Epoch [725/3000], train_loss: 3.0661, valid_loss: 2.3308
Epoch [726/3000], train_loss: 3.2833, valid_loss: 1.9913
Epoch [727/3000], train_loss: 3.3794, valid_loss: 1.7699
Epoch [728/3000], train_loss: 3.2049, valid_loss: 1.7127
Save model at epoch 728 with loss 1.7127
Epoch [729/3000], train_loss: 2.7646, valid_loss: 2.0044
Epoch [730/3000], train_loss: 3.0360, valid_loss: 2.0170
Epoch [731/3000], train_loss: 2.9898, valid_loss: 2.1985
Epoch [732/3000], train_loss: 3.1608, valid_loss: 2.1170
Epoch [733/3000], train_loss: 3.0732, valid_loss: 2.0093
Epoch [734/3000], train_loss: 3.0239, valid_loss: 2.2727
Epoch [735/3000], train_loss: 3.1499, valid_loss: 2.4081
Epoch [736/3000], train_loss: 2.6601, valid_loss: 1.8174
Epoch [737/3000], train_loss: 2.9317, valid_loss: 1.9916
Epoch [738/3000], train_loss: 3.1715, valid_loss: 1.9243
Epoch [739/3000], train_loss: 3.1036, valid_loss: 1.8895
Epoch [740/3000], train_loss: 2.8464, valid_loss: 2.1792
Epoch [741/3000], train_loss: 2.7999, valid_loss: 2.1123
Epoch [742/3000], train_loss: 2.8521, valid_loss: 1.9708
Epoch [743/3000], train_loss: 2.7188, valid_loss: 2.1582
Epoch [744/3000], train_loss: 2.9676, valid_loss: 2.1271
Epoch [745/3000], train_loss: 2.9328, valid_loss: 2.2306
Epoch [746/3000], train_loss: 3.0787, valid_loss: 1.9876
Epoch [747/3000], train_loss: 2.9481, valid_loss: 1.8868
Epoch [748/3000], train_loss: 2.8066, valid_loss: 2.7573
Epoch [749/3000], train_loss: 2.8682, valid_loss: 1.7966
Epoch [750/3000], train_loss: 2.9193, valid_loss: 2.2713
Epoch [751/3000], train_loss: 2.8022, valid_loss: 1.9947
Epoch [752/3000], train_loss: 2.7900, valid_loss: 2.1455
Epoch [753/3000], train_loss: 2.8028, valid_loss: 1.7591
Epoch [754/3000], train_loss: 3.1209, valid_loss: 2.0331
Epoch [755/3000], train_loss: 2.9065, valid_loss: 2.1083
Epoch [756/3000], train_loss: 2.7693, valid_loss: 2.2994
Epoch [757/3000], train_loss: 2.8298, valid_loss: 1.9148
Epoch [758/3000], train_loss: 2.9979, valid_loss: 1.7297
Epoch [759/3000], train_loss: 2.6623, valid_loss: 1.9116
Epoch [760/3000], train_loss: 2.7965, valid_loss: 1.9375
Epoch [761/3000], train_loss: 2.9098, valid_loss: 2.0072
Epoch [762/3000], train_loss: 2.5983, valid_loss: 1.7083
Save model at epoch 762 with loss 1.7083
Epoch [763/3000], train_loss: 2.9003, valid_loss: 1.8300
Epoch [764/3000], train_loss: 3.0624, valid_loss: 1.7692
Epoch [765/3000], train_loss: 2.9578, valid_loss: 1.6006
Save model at epoch 765 with loss 1.6006
Epoch [766/3000], train_loss: 3.0352, valid_loss: 2.1146
Epoch [767/3000], train_loss: 2.7599, valid_loss: 1.9688
Epoch [768/3000], train_loss: 3.0910, valid_loss: 2.0876
Epoch [769/3000], train_loss: 3.3707, valid_loss: 1.9991
Epoch [770/3000], train_loss: 2.8658, valid_loss: 1.7787
Epoch [771/3000], train_loss: 2.8506, valid_loss: 1.9591
Epoch [772/3000], train_loss: 2.9500, valid_loss: 2.0627
Epoch [773/3000], train_loss: 2.8882, valid_loss: 2.0067
Epoch [774/3000], train_loss: 2.8756, valid_loss: 2.3541
Epoch [775/3000], train_loss: 2.7428, valid_loss: 2.2014
Epoch [776/3000], train_loss: 2.9844, valid_loss: 2.0609
Epoch [777/3000], train_loss: 3.6928, valid_loss: 1.7654
Epoch [778/3000], train_loss: 2.9956, valid_loss: 1.9002
Epoch [779/3000], train_loss: 3.0246, valid_loss: 2.2217
Epoch [780/3000], train_loss: 3.1674, valid_loss: 1.9862
Epoch [781/3000], train_loss: 2.7531, valid_loss: 2.1668
Epoch [782/3000], train_loss: 3.4322, valid_loss: 1.6863
Epoch [783/3000], train_loss: 2.9388, valid_loss: 1.6861
Epoch [784/3000], train_loss: 2.8418, valid_loss: 2.0047
Epoch [785/3000], train_loss: 2.8815, valid_loss: 2.1096
Epoch [786/3000], train_loss: 2.8173, valid_loss: 2.0582
Epoch [787/3000], train_loss: 2.8957, valid_loss: 2.1171
Epoch [788/3000], train_loss: 2.8688, valid_loss: 2.0376
Epoch [789/3000], train_loss: 2.7699, valid_loss: 1.7625
Epoch [790/3000], train_loss: 3.0395, valid_loss: 1.7495
Epoch [791/3000], train_loss: 2.9444, valid_loss: 1.9365
Epoch [792/3000], train_loss: 2.9245, valid_loss: 2.2395
Epoch [793/3000], train_loss: 3.0600, valid_loss: 2.1133
Epoch [794/3000], train_loss: 3.0679, valid_loss: 2.1440
Epoch [795/3000], train_loss: 2.9589, valid_loss: 1.7671
Epoch [796/3000], train_loss: 2.8306, valid_loss: 1.8612
Epoch [797/3000], train_loss: 2.5431, valid_loss: 1.9030
Epoch [798/3000], train_loss: 3.1248, valid_loss: 2.0337
Epoch [799/3000], train_loss: 2.6442, valid_loss: 2.0134
Epoch [800/3000], train_loss: 2.8243, valid_loss: 2.0259
Epoch [801/3000], train_loss: 3.1326, valid_loss: 1.9633
Epoch [802/3000], train_loss: 2.8724, valid_loss: 1.9568
Epoch [803/3000], train_loss: 2.7108, valid_loss: 1.9343
Epoch [804/3000], train_loss: 2.6563, valid_loss: 2.0751
Epoch [805/3000], train_loss: 2.7243, valid_loss: 1.7941
Epoch [806/3000], train_loss: 2.5082, valid_loss: 1.7068
Epoch [807/3000], train_loss: 2.8638, valid_loss: 2.3495
Epoch [808/3000], train_loss: 3.1135, valid_loss: 1.7045
Epoch [809/3000], train_loss: 3.0150, valid_loss: 1.7873
Epoch [810/3000], train_loss: 3.1601, valid_loss: 1.8737
Epoch [811/3000], train_loss: 3.1622, valid_loss: 1.7745
Epoch [812/3000], train_loss: 3.1676, valid_loss: 2.5977
Epoch [813/3000], train_loss: 3.3860, valid_loss: 2.3975
Epoch [814/3000], train_loss: 2.7338, valid_loss: 1.9638
Epoch [815/3000], train_loss: 2.7483, valid_loss: 1.6785
Epoch [816/3000], train_loss: 3.0028, valid_loss: 2.3197
Epoch [817/3000], train_loss: 2.6658, valid_loss: 1.7499
Epoch [818/3000], train_loss: 2.8284, valid_loss: 2.0768
Epoch [819/3000], train_loss: 2.7713, valid_loss: 2.3525
Epoch [820/3000], train_loss: 2.9004, valid_loss: 1.7777
Epoch [821/3000], train_loss: 3.1012, valid_loss: 2.0039
Epoch [822/3000], train_loss: 2.8480, valid_loss: 1.7974
Epoch [823/3000], train_loss: 2.9483, valid_loss: 1.9230
Epoch [824/3000], train_loss: 2.8396, valid_loss: 2.2969
Epoch [825/3000], train_loss: 2.8919, valid_loss: 1.7791
Epoch [826/3000], train_loss: 2.8558, valid_loss: 2.0460
Epoch [827/3000], train_loss: 2.7187, valid_loss: 1.7774
Epoch [828/3000], train_loss: 2.5892, valid_loss: 2.0487
Epoch [829/3000], train_loss: 2.9972, valid_loss: 1.9055
Epoch [830/3000], train_loss: 2.8294, valid_loss: 1.8232
Epoch [831/3000], train_loss: 2.7132, valid_loss: 1.9399
Epoch [832/3000], train_loss: 2.5761, valid_loss: 2.1424
Epoch [833/3000], train_loss: 2.7093, valid_loss: 1.7393
Epoch [834/3000], train_loss: 2.9523, valid_loss: 2.0827
Epoch [835/3000], train_loss: 3.0623, valid_loss: 1.8772
Epoch [836/3000], train_loss: 2.7254, valid_loss: 1.9470
Epoch [837/3000], train_loss: 3.1114, valid_loss: 1.8397
Epoch [838/3000], train_loss: 3.2351, valid_loss: 1.8934
Epoch [839/3000], train_loss: 2.8959, valid_loss: 1.5943
Save model at epoch 839 with loss 1.5943
Epoch [840/3000], train_loss: 2.6434, valid_loss: 2.0318
Epoch [841/3000], train_loss: 2.8406, valid_loss: 1.8353
Epoch [842/3000], train_loss: 2.8297, valid_loss: 1.7469
Epoch [843/3000], train_loss: 2.8733, valid_loss: 1.8632
Epoch [844/3000], train_loss: 2.7448, valid_loss: 1.9659
Epoch [845/3000], train_loss: 2.6968, valid_loss: 2.0698
Epoch [846/3000], train_loss: 2.7731, valid_loss: 1.7212
Epoch [847/3000], train_loss: 3.4105, valid_loss: 1.8117
Epoch [848/3000], train_loss: 2.9925, valid_loss: 1.9717
Epoch [849/3000], train_loss: 2.9365, valid_loss: 1.6845
Epoch [850/3000], train_loss: 2.7046, valid_loss: 1.8057
Epoch [851/3000], train_loss: 2.5402, valid_loss: 1.7218
Epoch [852/3000], train_loss: 3.0923, valid_loss: 1.9034
Epoch [853/3000], train_loss: 2.6137, valid_loss: 1.6721
Epoch [854/3000], train_loss: 2.9592, valid_loss: 1.9021
Epoch [855/3000], train_loss: 2.6539, valid_loss: 1.8542
Epoch [856/3000], train_loss: 2.8199, valid_loss: 1.8997
Epoch [857/3000], train_loss: 2.7415, valid_loss: 2.1036
Epoch [858/3000], train_loss: 2.7749, valid_loss: 1.6324
Epoch [859/3000], train_loss: 2.9600, valid_loss: 1.6774
Epoch [860/3000], train_loss: 2.9705, valid_loss: 1.6057
Epoch [861/3000], train_loss: 2.8669, valid_loss: 1.9593
Epoch [862/3000], train_loss: 2.8817, valid_loss: 1.6698
Epoch [863/3000], train_loss: 2.9690, valid_loss: 2.0565
Epoch [864/3000], train_loss: 3.0164, valid_loss: 1.8415
Epoch [865/3000], train_loss: 2.5527, valid_loss: 2.4257
Epoch [866/3000], train_loss: 2.7556, valid_loss: 2.3173
Epoch [867/3000], train_loss: 2.8646, valid_loss: 2.1544
Epoch [868/3000], train_loss: 2.9385, valid_loss: 1.7399
Epoch [869/3000], train_loss: 2.9253, valid_loss: 1.8537
Epoch [870/3000], train_loss: 2.8127, valid_loss: 2.3991
Epoch [871/3000], train_loss: 3.1391, valid_loss: 2.1131
Epoch [872/3000], train_loss: 2.7605, valid_loss: 2.0618
Epoch [873/3000], train_loss: 2.6885, valid_loss: 1.8554
Epoch [874/3000], train_loss: 2.7160, valid_loss: 1.6266
Epoch [875/3000], train_loss: 2.7690, valid_loss: 1.7781
Epoch [876/3000], train_loss: 2.6789, valid_loss: 1.4719
Save model at epoch 876 with loss 1.4719
Epoch [877/3000], train_loss: 2.7553, valid_loss: 2.0571
Epoch [878/3000], train_loss: 2.6096, valid_loss: 2.0199
Epoch [879/3000], train_loss: 2.8228, valid_loss: 1.9825
Epoch [880/3000], train_loss: 2.7985, valid_loss: 1.8358
Epoch [881/3000], train_loss: 2.5873, valid_loss: 1.9522
Epoch [882/3000], train_loss: 2.7100, valid_loss: 2.0465
Epoch [883/3000], train_loss: 2.9439, valid_loss: 2.0861
Epoch [884/3000], train_loss: 2.9150, valid_loss: 1.5882
Epoch [885/3000], train_loss: 2.5782, valid_loss: 1.6226
Epoch [886/3000], train_loss: 2.5598, valid_loss: 1.6140
Epoch [887/3000], train_loss: 2.8279, valid_loss: 1.8191
Epoch [888/3000], train_loss: 2.7219, valid_loss: 1.8977
Epoch [889/3000], train_loss: 2.8254, valid_loss: 1.8459
Epoch [890/3000], train_loss: 2.7000, valid_loss: 1.9068
Epoch [891/3000], train_loss: 2.6990, valid_loss: 1.6924
Epoch [892/3000], train_loss: 3.0504, valid_loss: 2.0172
Epoch [893/3000], train_loss: 2.7243, valid_loss: 1.8779
Epoch [894/3000], train_loss: 2.6046, valid_loss: 1.7484
Epoch [895/3000], train_loss: 2.7857, valid_loss: 1.8133
Epoch [896/3000], train_loss: 2.7650, valid_loss: 1.7723
Epoch [897/3000], train_loss: 2.3514, valid_loss: 1.7914
Epoch [898/3000], train_loss: 2.6602, valid_loss: 1.8272
Epoch [899/3000], train_loss: 2.5062, valid_loss: 2.0085
Epoch [900/3000], train_loss: 2.9052, valid_loss: 1.8526
Epoch [901/3000], train_loss: 2.7773, valid_loss: 1.7352
Epoch [902/3000], train_loss: 2.9514, valid_loss: 1.6270
Epoch [903/3000], train_loss: 2.6669, valid_loss: 1.7481
Epoch [904/3000], train_loss: 2.6936, valid_loss: 1.6291
Epoch [905/3000], train_loss: 3.0233, valid_loss: 1.6073
Epoch [906/3000], train_loss: 2.6689, valid_loss: 1.7919
Epoch [907/3000], train_loss: 2.9068, valid_loss: 1.7451
Epoch [908/3000], train_loss: 3.1664, valid_loss: 1.8228
Epoch [909/3000], train_loss: 2.4853, valid_loss: 1.8639
Epoch [910/3000], train_loss: 2.6953, valid_loss: 1.7289
Epoch [911/3000], train_loss: 2.5035, valid_loss: 2.4439
Epoch [912/3000], train_loss: 2.5653, valid_loss: 2.2329
Epoch [913/3000], train_loss: 2.5754, valid_loss: 1.7671
Epoch [914/3000], train_loss: 2.8915, valid_loss: 1.9111
Epoch [915/3000], train_loss: 2.7131, valid_loss: 1.8942
Epoch [916/3000], train_loss: 2.6616, valid_loss: 2.0553
Epoch [917/3000], train_loss: 3.0364, valid_loss: 1.6312
Epoch [918/3000], train_loss: 2.5390, valid_loss: 1.6905
Epoch [919/3000], train_loss: 2.5676, valid_loss: 1.7972
Epoch [920/3000], train_loss: 2.7620, valid_loss: 1.5043
Epoch [921/3000], train_loss: 2.6554, valid_loss: 1.6744
Epoch [922/3000], train_loss: 2.8193, valid_loss: 1.6290
Epoch [923/3000], train_loss: 2.5769, valid_loss: 1.7288
Epoch [924/3000], train_loss: 2.6746, valid_loss: 1.8560
Epoch [925/3000], train_loss: 2.7063, valid_loss: 1.8942
Epoch [926/3000], train_loss: 2.6259, valid_loss: 1.5624
Epoch [927/3000], train_loss: 2.8243, valid_loss: 1.9223
Epoch [928/3000], train_loss: 2.4861, valid_loss: 1.9118
Epoch [929/3000], train_loss: 2.7686, valid_loss: 1.6080
Epoch [930/3000], train_loss: 2.7746, valid_loss: 1.8282
Epoch [931/3000], train_loss: 2.5395, valid_loss: 1.7165
Epoch [932/3000], train_loss: 2.5902, valid_loss: 1.7103
Epoch [933/3000], train_loss: 2.4832, valid_loss: 1.5418
Epoch [934/3000], train_loss: 2.6602, valid_loss: 1.9813
Epoch [935/3000], train_loss: 2.6388, valid_loss: 1.7738
Epoch [936/3000], train_loss: 2.7161, valid_loss: 1.7905
Epoch [937/3000], train_loss: 2.9119, valid_loss: 1.4895
Epoch [938/3000], train_loss: 2.4093, valid_loss: 1.9842
Epoch [939/3000], train_loss: 2.6296, valid_loss: 1.6858
Epoch [940/3000], train_loss: 2.5469, valid_loss: 1.7075
Epoch [941/3000], train_loss: 2.8520, valid_loss: 1.6882
Epoch [942/3000], train_loss: 2.8345, valid_loss: 1.6951
Epoch [943/3000], train_loss: 2.3829, valid_loss: 1.6220
Epoch [944/3000], train_loss: 2.7467, valid_loss: 2.1909
Epoch [945/3000], train_loss: 2.8455, valid_loss: 1.8138
Epoch [946/3000], train_loss: 2.7298, valid_loss: 1.6537
Epoch [947/3000], train_loss: 2.7366, valid_loss: 1.6312
Epoch [948/3000], train_loss: 3.0015, valid_loss: 2.2575
Epoch [949/3000], train_loss: 2.4558, valid_loss: 2.0268
Epoch [950/3000], train_loss: 2.4970, valid_loss: 2.0233
Epoch [951/3000], train_loss: 2.6654, valid_loss: 1.6513
Epoch [952/3000], train_loss: 2.6947, valid_loss: 2.5442
Epoch [953/3000], train_loss: 2.9091, valid_loss: 2.0382
Epoch [954/3000], train_loss: 2.5025, valid_loss: 2.2741
Epoch [955/3000], train_loss: 2.5474, valid_loss: 1.6417
Epoch [956/3000], train_loss: 2.5242, valid_loss: 1.5623
Epoch [957/3000], train_loss: 2.6382, valid_loss: 1.4995
Epoch [958/3000], train_loss: 2.5268, valid_loss: 1.7880
Epoch [959/3000], train_loss: 2.5506, valid_loss: 1.6008
Epoch [960/3000], train_loss: 2.7840, valid_loss: 1.7673
Epoch [961/3000], train_loss: 2.5662, valid_loss: 1.7214
Epoch [962/3000], train_loss: 2.6321, valid_loss: 1.8616
Epoch [963/3000], train_loss: 2.6821, valid_loss: 1.8044
Epoch [964/3000], train_loss: 2.4854, valid_loss: 1.6661
Epoch [965/3000], train_loss: 2.6682, valid_loss: 1.6460
Epoch [966/3000], train_loss: 2.6291, valid_loss: 1.6828
Epoch [967/3000], train_loss: 2.4106, valid_loss: 1.8688
Epoch [968/3000], train_loss: 2.7001, valid_loss: 1.7307
Epoch [969/3000], train_loss: 2.5665, valid_loss: 1.9206
Epoch [970/3000], train_loss: 2.7048, valid_loss: 1.6476
Epoch [971/3000], train_loss: 2.6443, valid_loss: 2.1188
Epoch [972/3000], train_loss: 2.4975, valid_loss: 1.5846
Epoch [973/3000], train_loss: 2.5683, valid_loss: 1.8202
Epoch [974/3000], train_loss: 2.5021, valid_loss: 1.7818
Epoch [975/3000], train_loss: 2.7639, valid_loss: 1.8854
Epoch [976/3000], train_loss: 2.6359, valid_loss: 1.5399
Epoch [977/3000], train_loss: 2.4292, valid_loss: 1.5342
Epoch [978/3000], train_loss: 2.8944, valid_loss: 1.7094
Epoch [979/3000], train_loss: 2.4655, valid_loss: 1.6083
Epoch [980/3000], train_loss: 2.3855, valid_loss: 1.6820
Epoch [981/3000], train_loss: 2.7111, valid_loss: 1.5511
Epoch [982/3000], train_loss: 2.5984, valid_loss: 2.0117
Epoch [983/3000], train_loss: 2.6484, valid_loss: 1.5289
Epoch [984/3000], train_loss: 2.8065, valid_loss: 1.8859
Epoch [985/3000], train_loss: 2.4273, valid_loss: 1.5166
Epoch [986/3000], train_loss: 2.3929, valid_loss: 1.4917
Epoch [987/3000], train_loss: 2.6262, valid_loss: 1.6764
Epoch [988/3000], train_loss: 2.6079, valid_loss: 1.8337
Epoch [989/3000], train_loss: 2.5498, valid_loss: 1.8667
Epoch [990/3000], train_loss: 2.5625, valid_loss: 1.7432
Epoch [991/3000], train_loss: 2.5158, valid_loss: 1.8663
Epoch [992/3000], train_loss: 2.6095, valid_loss: 1.9378
Epoch [993/3000], train_loss: 2.5431, valid_loss: 1.5607
Epoch [994/3000], train_loss: 2.4844, valid_loss: 1.6585
Epoch [995/3000], train_loss: 2.5883, valid_loss: 1.8020
Epoch [996/3000], train_loss: 2.5881, valid_loss: 1.6978
Epoch [997/3000], train_loss: 2.6670, valid_loss: 1.8035
Epoch [998/3000], train_loss: 2.5914, valid_loss: 1.6412
Epoch [999/3000], train_loss: 2.8970, valid_loss: 1.6045
Epoch [1000/3000], train_loss: 2.7678, valid_loss: 1.9208
Epoch [1001/3000], train_loss: 2.3187, valid_loss: 2.0448
Epoch [1002/3000], train_loss: 2.8953, valid_loss: 1.5305
Epoch [1003/3000], train_loss: 2.6773, valid_loss: 2.0061
Epoch [1004/3000], train_loss: 2.4002, valid_loss: 1.6195
Epoch [1005/3000], train_loss: 2.4218, valid_loss: 1.9053
Epoch [1006/3000], train_loss: 2.4133, valid_loss: 1.7474
Epoch [1007/3000], train_loss: 2.2606, valid_loss: 1.6932
Epoch [1008/3000], train_loss: 2.6239, valid_loss: 1.6943
Epoch [1009/3000], train_loss: 2.5747, valid_loss: 1.5222
Epoch [1010/3000], train_loss: 2.7750, valid_loss: 1.6663
Epoch [1011/3000], train_loss: 2.7333, valid_loss: 2.1338
Epoch [1012/3000], train_loss: 2.4980, valid_loss: 1.7705
Epoch [1013/3000], train_loss: 2.4525, valid_loss: 1.6679
Epoch [1014/3000], train_loss: 2.6077, valid_loss: 1.6234
Epoch [1015/3000], train_loss: 2.4709, valid_loss: 1.6591
Epoch [1016/3000], train_loss: 2.5662, valid_loss: 1.8046
Epoch [1017/3000], train_loss: 2.7107, valid_loss: 1.4697
Save model at epoch 1017 with loss 1.4697
Epoch [1018/3000], train_loss: 2.4732, valid_loss: 1.8847
Epoch [1019/3000], train_loss: 2.6379, valid_loss: 1.7271
Epoch [1020/3000], train_loss: 2.4473, valid_loss: 1.5415
Epoch [1021/3000], train_loss: 2.4034, valid_loss: 1.8809
Epoch [1022/3000], train_loss: 2.7248, valid_loss: 1.7204
Epoch [1023/3000], train_loss: 2.4165, valid_loss: 2.0009
Epoch [1024/3000], train_loss: 2.5759, valid_loss: 1.7257
Epoch [1025/3000], train_loss: 3.0217, valid_loss: 1.9711
Epoch [1026/3000], train_loss: 2.5870, valid_loss: 1.6082
Epoch [1027/3000], train_loss: 2.3221, valid_loss: 1.4629
Save model at epoch 1027 with loss 1.4629
Epoch [1028/3000], train_loss: 2.4899, valid_loss: 1.6729
Epoch [1029/3000], train_loss: 2.4413, valid_loss: 1.4766
Epoch [1030/3000], train_loss: 2.7231, valid_loss: 1.7432
Epoch [1031/3000], train_loss: 2.4260, valid_loss: 1.6365
Epoch [1032/3000], train_loss: 2.4788, valid_loss: 1.8087
Epoch [1033/3000], train_loss: 2.3885, valid_loss: 1.5375
Epoch [1034/3000], train_loss: 2.4362, valid_loss: 1.5431
Epoch [1035/3000], train_loss: 2.3379, valid_loss: 1.7144
Epoch [1036/3000], train_loss: 2.1804, valid_loss: 1.8132
Epoch [1037/3000], train_loss: 2.4670, valid_loss: 1.5878
Epoch [1038/3000], train_loss: 2.5724, valid_loss: 1.6719
Epoch [1039/3000], train_loss: 2.5170, valid_loss: 1.7935
Epoch [1040/3000], train_loss: 2.4093, valid_loss: 2.0688
Epoch [1041/3000], train_loss: 2.4972, valid_loss: 1.5312
Epoch [1042/3000], train_loss: 2.5321, valid_loss: 1.5172
Epoch [1043/3000], train_loss: 2.5656, valid_loss: 1.8277
Epoch [1044/3000], train_loss: 2.5866, valid_loss: 1.5704
Epoch [1045/3000], train_loss: 2.6909, valid_loss: 1.5767
Epoch [1046/3000], train_loss: 2.3787, valid_loss: 1.6415
Epoch [1047/3000], train_loss: 2.5399, valid_loss: 1.8353
Epoch [1048/3000], train_loss: 2.4641, valid_loss: 1.6913
Epoch [1049/3000], train_loss: 2.2962, valid_loss: 1.7292
Epoch [1050/3000], train_loss: 2.6402, valid_loss: 1.5328
Epoch [1051/3000], train_loss: 2.4643, valid_loss: 1.4180
Save model at epoch 1051 with loss 1.4180
Epoch [1052/3000], train_loss: 2.2673, valid_loss: 1.5501
Epoch [1053/3000], train_loss: 2.4924, valid_loss: 1.8863
Epoch [1054/3000], train_loss: 2.6539, valid_loss: 1.4037
Save model at epoch 1054 with loss 1.4037
Epoch [1055/3000], train_loss: 2.5705, valid_loss: 1.7693
Epoch [1056/3000], train_loss: 3.0047, valid_loss: 1.8522
Epoch [1057/3000], train_loss: 2.3424, valid_loss: 1.6456
Epoch [1058/3000], train_loss: 2.3456, valid_loss: 1.7291
Epoch [1059/3000], train_loss: 2.6359, valid_loss: 1.5829
Epoch [1060/3000], train_loss: 2.7155, valid_loss: 1.5257
Epoch [1061/3000], train_loss: 2.7420, valid_loss: 1.9634
Epoch [1062/3000], train_loss: 2.7076, valid_loss: 1.8178
Epoch [1063/3000], train_loss: 2.2548, valid_loss: 1.5531
Epoch [1064/3000], train_loss: 2.4989, valid_loss: 1.6830
Epoch [1065/3000], train_loss: 2.5996, valid_loss: 1.9258
Epoch [1066/3000], train_loss: 2.6149, valid_loss: 1.6556
Epoch [1067/3000], train_loss: 2.5197, valid_loss: 1.6002
Epoch [1068/3000], train_loss: 2.6779, valid_loss: 1.8396
Epoch [1069/3000], train_loss: 2.5362, valid_loss: 1.4864
Epoch [1070/3000], train_loss: 2.4745, valid_loss: 1.6274
Epoch [1071/3000], train_loss: 2.9077, valid_loss: 1.7470
Epoch [1072/3000], train_loss: 2.8817, valid_loss: 1.7404
Epoch [1073/3000], train_loss: 2.3521, valid_loss: 2.4464
Epoch [1074/3000], train_loss: 2.2164, valid_loss: 2.1596
Epoch [1075/3000], train_loss: 2.4103, valid_loss: 1.5035
Epoch [1076/3000], train_loss: 2.4451, valid_loss: 1.4730
Epoch [1077/3000], train_loss: 2.7309, valid_loss: 1.7887
Epoch [1078/3000], train_loss: 2.3130, valid_loss: 1.8988
Epoch [1079/3000], train_loss: 2.6081, valid_loss: 1.7063
Epoch [1080/3000], train_loss: 2.9178, valid_loss: 1.6305
Epoch [1081/3000], train_loss: 2.5339, valid_loss: 1.4779
Epoch [1082/3000], train_loss: 2.3276, valid_loss: 1.4887
Epoch [1083/3000], train_loss: 2.5682, valid_loss: 1.8013
Epoch [1084/3000], train_loss: 2.3729, valid_loss: 1.4600
Epoch [1248/3000], train_loss: 2.4699, valid_loss: 1.6456
Epoch [1249/3000], train_loss: 2.3295, valid_loss: 1.7310
Epoch [1250/3000], train_loss: 2.7221, valid_loss: 1.3797
Epoch [1251/3000], train_loss: 2.5044, valid_loss: 1.7545
Epoch [1252/3000], train_loss: 2.4828, valid_loss: 1.5312
Epoch [1253/3000], train_loss: 2.5347, valid_loss: 1.5977
Epoch [1254/3000], train_loss: 2.2785, valid_loss: 1.6766
Epoch [1255/3000], train_loss: 2.3821, valid_loss: 1.4178
Epoch [1256/3000], train_loss: 2.4426, valid_loss: 1.5217
Epoch [1257/3000], train_loss: 2.4005, valid_loss: 1.3000
Save model at epoch 1257 with loss 1.3000
Epoch [1258/3000], train_loss: 2.3180, valid_loss: 1.6646
Epoch [1259/3000], train_loss: 2.3955, valid_loss: 1.9645
Epoch [1260/3000], train_loss: 2.2478, valid_loss: 1.4828
Epoch [1261/3000], train_loss: 2.3232, valid_loss: 1.4400
Epoch [1262/3000], train_loss: 2.1197, valid_loss: 1.5484
Epoch [1263/3000], train_loss: 2.2262, valid_loss: 1.6222
Epoch [1264/3000], train_loss: 2.4733, valid_loss: 1.5139
Epoch [1265/3000], train_loss: 2.6760, valid_loss: 1.4488
Epoch [1266/3000], train_loss: 2.3562, valid_loss: 1.5562
Epoch [1267/3000], train_loss: 2.1178, valid_loss: 1.6972
Epoch [1268/3000], train_loss: 2.5883, valid_loss: 1.4122
Epoch [1269/3000], train_loss: 2.3318, valid_loss: 1.3823
Epoch [1270/3000], train_loss: 2.2268, valid_loss: 1.4048
Epoch [1271/3000], train_loss: 2.3451, valid_loss: 1.5284
Epoch [1272/3000], train_loss: 2.5563, valid_loss: 1.3873
Epoch [1273/3000], train_loss: 2.2820, valid_loss: 1.2849
Save model at epoch 1273 with loss 1.2849
Epoch [1274/3000], train_loss: 2.1983, valid_loss: 1.4369
Epoch [1275/3000], train_loss: 2.1109, valid_loss: 1.4053
Epoch [1276/3000], train_loss: 2.4061, valid_loss: 1.4321
Epoch [1277/3000], train_loss: 2.2141, valid_loss: 1.4103
Epoch [1278/3000], train_loss: 2.2669, valid_loss: 1.4417
Epoch [1279/3000], train_loss: 2.6216, valid_loss: 1.8534
Epoch [1280/3000], train_loss: 2.7784, valid_loss: 2.0174
Epoch [1281/3000], train_loss: 2.3862, valid_loss: 1.5803
Epoch [1282/3000], train_loss: 2.2894, valid_loss: 1.4159
Epoch [1283/3000], train_loss: 2.1670, valid_loss: 1.4633
Epoch [1284/3000], train_loss: 2.3316, valid_loss: 1.6684
Epoch [1285/3000], train_loss: 2.2178, valid_loss: 1.7489
Epoch [1286/3000], train_loss: 2.9230, valid_loss: 1.6420
Epoch [1287/3000], train_loss: 2.9281, valid_loss: 1.2823
Save model at epoch 1287 with loss 1.2823
Epoch [1288/3000], train_loss: 2.2373, valid_loss: 1.8902
Epoch [1289/3000], train_loss: 2.5489, valid_loss: 1.5497
Epoch [1290/3000], train_loss: 2.3029, valid_loss: 1.5005
Epoch [1291/3000], train_loss: 2.3688, valid_loss: 1.4703
Epoch [1292/3000], train_loss: 2.3299, valid_loss: 1.4514
Epoch [1293/3000], train_loss: 2.2084, valid_loss: 1.4016
Epoch [1331/3000], train_loss: 2.1696, valid_loss: 1.5141
Epoch [1332/3000], train_loss: 2.0782, valid_loss: 1.7072
Epoch [1333/3000], train_loss: 2.7588, valid_loss: 1.7447
Epoch [1334/3000], train_loss: 2.3647, valid_loss: 1.4100
Epoch [1335/3000], train_loss: 2.2407, valid_loss: 1.4038
Epoch [1336/3000], train_loss: 2.0954, valid_loss: 1.6559
Epoch [1337/3000], train_loss: 2.0527, valid_loss: 1.5119
Epoch [1338/3000], train_loss: 2.1549, valid_loss: 1.6842
Epoch [1339/3000], train_loss: 2.0866, valid_loss: 1.4570
Epoch [1340/3000], train_loss: 2.0864, valid_loss: 1.3468
Epoch [1341/3000], train_loss: 2.3068, valid_loss: 1.6876
Epoch [1342/3000], train_loss: 2.0835, valid_loss: 1.5692
Epoch [1343/3000], train_loss: 2.5608, valid_loss: 1.7779
Epoch [1344/3000], train_loss: 2.3927, valid_loss: 1.3723
Epoch [1345/3000], train_loss: 2.0856, valid_loss: 1.6315
Epoch [1346/3000], train_loss: 2.5916, valid_loss: 1.4859
Epoch [1347/3000], train_loss: 2.0384, valid_loss: 1.3798
Epoch [1348/3000], train_loss: 2.4168, valid_loss: 1.4570
Epoch [1349/3000], train_loss: 2.3246, valid_loss: 1.7854
Epoch [1350/3000], train_loss: 2.1734, valid_loss: 1.7112
Epoch [1351/3000], train_loss: 2.2781, valid_loss: 1.5617
Epoch [1352/3000], train_loss: 2.1590, valid_loss: 1.4061
Epoch [1353/3000], train_loss: 2.3301, valid_loss: 1.4206
Epoch [1354/3000], train_loss: 2.2190, valid_loss: 1.5921
Epoch [1355/3000], train_loss: 2.2125, valid_loss: 1.4778
Epoch [1356/3000], train_loss: 2.2290, valid_loss: 1.3004
Epoch [1357/3000], train_loss: 2.6301, valid_loss: 1.8091
Epoch [1358/3000], train_loss: 2.2722, valid_loss: 1.5469
Epoch [1359/3000], train_loss: 2.2219, valid_loss: 1.3855
Epoch [1360/3000], train_loss: 2.3120, valid_loss: 1.3570
Epoch [1361/3000], train_loss: 2.3461, valid_loss: 1.3224
Epoch [1362/3000], train_loss: 2.1151, valid_loss: 1.5864
Epoch [1363/3000], train_loss: 2.3354, valid_loss: 1.4758
Epoch [1364/3000], train_loss: 2.1083, valid_loss: 1.4328
Epoch [1365/3000], train_loss: 2.3263, valid_loss: 1.6099
Epoch [1366/3000], train_loss: 2.3338, valid_loss: 1.5116
Epoch [1367/3000], train_loss: 2.3177, valid_loss: 1.5415
Epoch [1368/3000], train_loss: 2.2429, valid_loss: 1.5570
Epoch [1369/3000], train_loss: 2.3855, valid_loss: 1.6015
Epoch [1370/3000], train_loss: 2.1198, valid_loss: 1.6128
Epoch [1371/3000], train_loss: 2.2455, valid_loss: 1.5377
Epoch [1372/3000], train_loss: 2.2233, valid_loss: 1.8212
Epoch [1373/3000], train_loss: 2.1256, valid_loss: 1.7843
Epoch [1374/3000], train_loss: 2.3075, valid_loss: 1.4988
Epoch [1375/3000], train_loss: 2.4148, valid_loss: 1.7712
Epoch [1376/3000], train_loss: 2.5172, valid_loss: 1.4901
Epoch [1377/3000], train_loss: 2.3940, valid_loss: 1.4787
Epoch [1378/3000], train_loss: 2.2109, valid_loss: 1.3918
Epoch [1379/3000], train_loss: 2.1721, valid_loss: 1.5605
Epoch [1380/3000], train_loss: 2.3004, valid_loss: 1.6318
Epoch [1381/3000], train_loss: 2.7262, valid_loss: 1.2957
Epoch [1382/3000], train_loss: 2.2298, valid_loss: 1.2438
Save model at epoch 1382 with loss 1.2438
Epoch [1383/3000], train_loss: 1.9479, valid_loss: 1.8946
Epoch [1384/3000], train_loss: 2.0824, valid_loss: 1.7821
Epoch [1385/3000], train_loss: 2.0729, valid_loss: 1.5587
Epoch [1386/3000], train_loss: 2.1902, valid_loss: 1.4711
Epoch [1387/3000], train_loss: 2.3934, valid_loss: 1.5977
Epoch [1388/3000], train_loss: 2.1508, valid_loss: 1.4989
Epoch [1389/3000], train_loss: 2.1513, valid_loss: 1.5017
Epoch [1390/3000], train_loss: 2.1419, valid_loss: 1.3321
Epoch [1391/3000], train_loss: 2.1594, valid_loss: 1.3197
Epoch [1392/3000], train_loss: 2.4525, valid_loss: 1.2392
Save model at epoch 1392 with loss 1.2392
Epoch [1393/3000], train_loss: 2.0217, valid_loss: 1.5226
Epoch [1394/3000], train_loss: 2.2796, valid_loss: 1.5578
Epoch [1395/3000], train_loss: 2.1509, valid_loss: 1.3024
Epoch [1396/3000], train_loss: 2.2105, valid_loss: 1.7583
Epoch [1397/3000], train_loss: 2.3025, valid_loss: 1.4857
Epoch [1398/3000], train_loss: 2.3205, valid_loss: 1.6419
Epoch [1399/3000], train_loss: 2.2694, valid_loss: 1.5875
Epoch [1400/3000], train_loss: 1.9859, valid_loss: 1.6306
Epoch [1401/3000], train_loss: 2.0860, valid_loss: 1.5518
Epoch [1402/3000], train_loss: 2.3475, valid_loss: 2.0262
Epoch [1403/3000], train_loss: 2.2316, valid_loss: 1.8901
Epoch [1404/3000], train_loss: 2.3966, valid_loss: 1.4141
Epoch [1405/3000], train_loss: 2.0864, valid_loss: 1.5074
Epoch [1406/3000], train_loss: 2.0447, valid_loss: 1.4487
Epoch [1407/3000], train_loss: 2.1715, valid_loss: 1.4449
Epoch [1408/3000], train_loss: 2.3111, valid_loss: 1.7979
Epoch [1409/3000], train_loss: 2.0693, valid_loss: 1.4540
Epoch [1410/3000], train_loss: 2.2820, valid_loss: 1.5054
Epoch [1411/3000], train_loss: 2.2586, valid_loss: 1.4937
Epoch [1412/3000], train_loss: 2.2212, valid_loss: 1.5744
Epoch [1413/3000], train_loss: 2.1451, valid_loss: 1.5243
Epoch [1414/3000], train_loss: 1.9442, valid_loss: 1.4315
Epoch [1415/3000], train_loss: 2.2358, valid_loss: 1.3688
Epoch [1416/3000], train_loss: 2.1948, valid_loss: 1.6717
Epoch [1417/3000], train_loss: 2.1623, valid_loss: 1.4733
Epoch [1418/3000], train_loss: 2.4576, valid_loss: 1.3823
Epoch [1419/3000], train_loss: 2.4856, valid_loss: 1.4490
Epoch [1420/3000], train_loss: 2.5014, valid_loss: 1.4021
Epoch [1421/3000], train_loss: 2.1242, valid_loss: 1.3064
Epoch [1422/3000], train_loss: 2.0421, valid_loss: 1.3095
Epoch [1423/3000], train_loss: 2.2651, valid_loss: 1.6872
Epoch [1424/3000], train_loss: 2.2931, valid_loss: 1.5629
Epoch [1425/3000], train_loss: 2.4534, valid_loss: 1.7026
Epoch [1426/3000], train_loss: 2.1794, valid_loss: 1.3589
Epoch [1427/3000], train_loss: 2.3588, valid_loss: 2.0837
Epoch [1428/3000], train_loss: 2.1387, valid_loss: 1.7901
Epoch [1429/3000], train_loss: 2.3755, valid_loss: 1.3524
Epoch [1430/3000], train_loss: 2.3175, valid_loss: 1.2917
Epoch [1431/3000], train_loss: 2.1383, valid_loss: 1.7320
Epoch [1432/3000], train_loss: 2.5020, valid_loss: 1.3864
Epoch [1433/3000], train_loss: 2.1709, valid_loss: 1.4208
Epoch [1434/3000], train_loss: 2.2406, valid_loss: 1.6807
Epoch [1435/3000], train_loss: 1.9864, valid_loss: 1.5874
Epoch [1436/3000], train_loss: 2.1685, valid_loss: 1.4398
Epoch [1437/3000], train_loss: 2.0893, valid_loss: 1.3432
Epoch [1438/3000], train_loss: 2.0714, valid_loss: 1.5966
Epoch [1439/3000], train_loss: 2.2276, valid_loss: 1.5230
Epoch [1440/3000], train_loss: 2.0970, valid_loss: 1.4216
Epoch [1441/3000], train_loss: 2.1468, valid_loss: 1.4341
Epoch [1442/3000], train_loss: 2.1814, valid_loss: 1.3550
Epoch [1443/3000], train_loss: 2.2363, valid_loss: 1.4174
Epoch [1444/3000], train_loss: 2.1554, valid_loss: 1.2911
Epoch [1445/3000], train_loss: 2.1522, valid_loss: 1.5975
Epoch [1446/3000], train_loss: 2.3476, valid_loss: 1.7122
Epoch [1447/3000], train_loss: 2.0885, valid_loss: 1.6613
Epoch [1448/3000], train_loss: 1.9918, valid_loss: 1.4484
Epoch [1449/3000], train_loss: 1.9752, valid_loss: 1.3098
Epoch [1450/3000], train_loss: 2.0752, valid_loss: 1.6519
Epoch [1451/3000], train_loss: 2.3688, valid_loss: 1.5285
Epoch [1452/3000], train_loss: 1.9555, valid_loss: 1.4991
Epoch [1453/3000], train_loss: 2.3485, valid_loss: 1.5819
Epoch [1454/3000], train_loss: 2.1119, valid_loss: 1.8547
Epoch [1455/3000], train_loss: 2.1413, valid_loss: 1.6248
Epoch [1456/3000], train_loss: 2.1624, valid_loss: 1.5975
Epoch [1457/3000], train_loss: 2.1347, valid_loss: 1.5567
Epoch [1458/3000], train_loss: 2.1191, valid_loss: 1.4918
Epoch [1459/3000], train_loss: 2.1522, valid_loss: 1.4999
Epoch [1460/3000], train_loss: 2.0387, valid_loss: 1.3435
Epoch [1461/3000], train_loss: 2.2567, valid_loss: 1.4836
Epoch [1462/3000], train_loss: 2.3035, valid_loss: 1.4693
Epoch [1463/3000], train_loss: 2.0572, valid_loss: 1.2662
Epoch [1464/3000], train_loss: 2.2510, valid_loss: 1.4125
Epoch [1465/3000], train_loss: 2.0791, valid_loss: 1.6064
Epoch [1466/3000], train_loss: 2.2023, valid_loss: 1.5266
Epoch [1467/3000], train_loss: 2.1212, valid_loss: 1.2476
Epoch [1468/3000], train_loss: 2.4102, valid_loss: 1.4097
Epoch [1469/3000], train_loss: 2.1712, valid_loss: 1.4617
Epoch [1470/3000], train_loss: 2.2731, valid_loss: 1.4801
Epoch [1471/3000], train_loss: 1.8906, valid_loss: 1.6600
Epoch [1472/3000], train_loss: 2.0428, valid_loss: 1.6368
Epoch [1473/3000], train_loss: 2.2404, valid_loss: 1.2798
Epoch [1474/3000], train_loss: 2.3053, valid_loss: 1.4886
Epoch [1475/3000], train_loss: 2.2863, valid_loss: 1.6920
Epoch [1476/3000], train_loss: 1.9081, valid_loss: 1.2656
Epoch [1477/3000], train_loss: 2.0855, valid_loss: 1.4479
Epoch [1478/3000], train_loss: 2.7044, valid_loss: 1.4397
Epoch [1479/3000], train_loss: 2.1354, valid_loss: 1.4002
Epoch [1480/3000], train_loss: 2.3265, valid_loss: 1.2876
Epoch [1481/3000], train_loss: 2.0493, valid_loss: 1.6975
Epoch [1482/3000], train_loss: 2.1620, valid_loss: 1.5874
Epoch [1483/3000], train_loss: 1.9058, valid_loss: 1.4154
Epoch [1484/3000], train_loss: 2.3393, valid_loss: 1.6576
Epoch [1485/3000], train_loss: 2.0130, valid_loss: 1.5598
Epoch [1486/3000], train_loss: 2.2902, valid_loss: 1.7236
Epoch [1487/3000], train_loss: 2.7042, valid_loss: 1.4403
Epoch [1488/3000], train_loss: 2.2435, valid_loss: 1.2031
Save model at epoch 1488 with loss 1.2031
Epoch [1489/3000], train_loss: 2.2731, valid_loss: 1.4182
Epoch [1490/3000], train_loss: 2.1164, valid_loss: 1.4125
Epoch [1491/3000], train_loss: 2.1694, valid_loss: 1.6799
Epoch [1492/3000], train_loss: 1.9289, valid_loss: 1.3868
Epoch [1493/3000], train_loss: 2.2182, valid_loss: 1.6464
Epoch [1494/3000], train_loss: 2.1285, valid_loss: 1.2577
Epoch [1495/3000], train_loss: 2.2467, valid_loss: 1.4156
Epoch [1496/3000], train_loss: 2.0801, valid_loss: 1.2876
Epoch [1497/3000], train_loss: 2.3340, valid_loss: 1.4992
Epoch [1498/3000], train_loss: 2.5990, valid_loss: 1.5679
Epoch [1499/3000], train_loss: 2.6418, valid_loss: 1.3568
Epoch [1500/3000], train_loss: 2.2760, valid_loss: 1.4725
Epoch [1501/3000], train_loss: 1.9825, valid_loss: 1.4186
Epoch [1502/3000], train_loss: 2.4629, valid_loss: 1.7605
Epoch [1503/3000], train_loss: 2.2553, valid_loss: 1.5302
Epoch [1504/3000], train_loss: 2.1565, valid_loss: 1.4671
Epoch [1505/3000], train_loss: 2.2714, valid_loss: 1.4253
Epoch [1506/3000], train_loss: 1.8989, valid_loss: 1.5302
Epoch [1507/3000], train_loss: 2.0136, valid_loss: 1.2652
Epoch [1508/3000], train_loss: 1.9404, valid_loss: 1.4559
Epoch [1509/3000], train_loss: 2.1099, valid_loss: 1.3796
Epoch [1510/3000], train_loss: 2.0290, valid_loss: 1.4670
Epoch [1511/3000], train_loss: 2.3950, valid_loss: 1.5949
Epoch [1512/3000], train_loss: 2.0754, valid_loss: 1.5655
Epoch [1513/3000], train_loss: 2.3038, valid_loss: 1.3267
Epoch [1514/3000], train_loss: 2.2901, valid_loss: 1.4130
Epoch [1515/3000], train_loss: 2.0196, valid_loss: 1.6026
Epoch [1516/3000], train_loss: 2.0668, valid_loss: 1.4114
Epoch [1517/3000], train_loss: 1.9866, valid_loss: 1.2348
Epoch [1518/3000], train_loss: 2.1927, valid_loss: 1.7404
Epoch [1519/3000], train_loss: 2.1485, valid_loss: 1.4746
Epoch [1520/3000], train_loss: 2.2460, valid_loss: 1.6937
Epoch [1521/3000], train_loss: 1.9665, valid_loss: 1.3327
Epoch [1522/3000], train_loss: 2.1820, valid_loss: 1.4458
Epoch [1523/3000], train_loss: 2.5660, valid_loss: 1.5101
Epoch [1524/3000], train_loss: 2.1612, valid_loss: 1.4321
Epoch [1525/3000], train_loss: 2.1641, valid_loss: 1.5587
Epoch [1526/3000], train_loss: 2.1150, valid_loss: 1.4766
Epoch [1527/3000], train_loss: 2.1577, valid_loss: 1.2542
Epoch [1528/3000], train_loss: 2.5034, valid_loss: 1.4526
Epoch [1529/3000], train_loss: 1.9761, valid_loss: 1.5238
Epoch [1530/3000], train_loss: 2.1411, valid_loss: 1.4715
Epoch [1531/3000], train_loss: 2.4054, valid_loss: 1.4607
Epoch [1532/3000], train_loss: 2.1235, valid_loss: 1.6191
Epoch [1533/3000], train_loss: 2.0533, valid_loss: 1.2914
Epoch [1534/3000], train_loss: 2.0917, valid_loss: 1.4227
Epoch [1535/3000], train_loss: 2.0624, valid_loss: 1.3578
Epoch [1536/3000], train_loss: 2.1227, valid_loss: 1.3378
Epoch [1537/3000], train_loss: 2.1650, valid_loss: 1.5729
Epoch [1538/3000], train_loss: 2.0570, valid_loss: 1.4520
Epoch [1539/3000], train_loss: 2.3119, valid_loss: 1.6188
Epoch [1540/3000], train_loss: 2.2437, valid_loss: 1.4040
Epoch [1541/3000], train_loss: 2.2056, valid_loss: 1.5992
Epoch [1542/3000], train_loss: 2.2396, valid_loss: 1.3177
Epoch [1543/3000], train_loss: 2.4646, valid_loss: 1.2751
Epoch [1544/3000], train_loss: 1.9605, valid_loss: 1.3592
Epoch [1545/3000], train_loss: 2.2295, valid_loss: 1.5271
Epoch [1546/3000], train_loss: 2.3017, valid_loss: 1.4063
Epoch [1547/3000], train_loss: 2.1920, valid_loss: 1.2779
Epoch [1548/3000], train_loss: 2.2906, valid_loss: 1.2941
Epoch [1549/3000], train_loss: 2.0630, valid_loss: 1.2282
Epoch [1550/3000], train_loss: 2.0416, valid_loss: 1.4526
Epoch [1551/3000], train_loss: 2.0690, valid_loss: 1.4500
Epoch [1552/3000], train_loss: 2.1457, valid_loss: 1.6286
Epoch [1553/3000], train_loss: 2.1323, valid_loss: 1.4276
Epoch [1554/3000], train_loss: 2.0674, valid_loss: 1.5951
Epoch [1555/3000], train_loss: 2.1775, valid_loss: 1.3425
Epoch [1556/3000], train_loss: 2.2629, valid_loss: 1.2634
Epoch [1557/3000], train_loss: 1.9113, valid_loss: 1.8535
Epoch [1558/3000], train_loss: 2.5419, valid_loss: 1.3341
Epoch [1559/3000], train_loss: 2.1005, valid_loss: 1.4793
Epoch [1560/3000], train_loss: 2.2841, valid_loss: 1.4292
Epoch [1561/3000], train_loss: 1.9731, valid_loss: 1.3897
Epoch [1562/3000], train_loss: 2.0547, valid_loss: 1.3576
Epoch [1563/3000], train_loss: 2.1451, valid_loss: 1.8255
Epoch [1564/3000], train_loss: 2.0494, valid_loss: 1.5851
Epoch [1565/3000], train_loss: 2.3108, valid_loss: 1.3679
Epoch [1566/3000], train_loss: 2.0165, valid_loss: 1.4100
Epoch [1567/3000], train_loss: 1.9958, valid_loss: 1.4968
Epoch [1568/3000], train_loss: 2.4186, valid_loss: 1.4964
Epoch [1569/3000], train_loss: 2.0365, valid_loss: 1.2867
Epoch [1570/3000], train_loss: 2.2372, valid_loss: 1.6731
Epoch [1571/3000], train_loss: 2.2302, valid_loss: 1.2698
Epoch [1572/3000], train_loss: 2.0353, valid_loss: 1.3289
Epoch [1573/3000], train_loss: 1.9575, valid_loss: 1.5878
Epoch [1574/3000], train_loss: 2.0062, valid_loss: 1.2634
Epoch [1575/3000], train_loss: 2.1277, valid_loss: 1.4950
Epoch [1576/3000], train_loss: 2.2616, valid_loss: 1.6469
Epoch [1577/3000], train_loss: 2.1189, valid_loss: 1.4163
Epoch [1578/3000], train_loss: 2.0463, valid_loss: 1.4574
Epoch [1579/3000], train_loss: 2.2688, valid_loss: 1.3887
Epoch [1580/3000], train_loss: 1.9995, valid_loss: 1.4289
Epoch [1581/3000], train_loss: 2.0741, valid_loss: 1.4904
Epoch [1582/3000], train_loss: 2.1246, valid_loss: 1.4984
Epoch [1583/3000], train_loss: 2.0551, valid_loss: 1.3135
Epoch [1584/3000], train_loss: 2.0132, valid_loss: 1.4998
Epoch [1585/3000], train_loss: 2.1340, valid_loss: 1.6612
Epoch [1586/3000], train_loss: 1.9916, valid_loss: 1.2968
Epoch [1587/3000], train_loss: 2.2233, valid_loss: 1.6994
Epoch [1588/3000], train_loss: 2.2217, valid_loss: 1.4816
Epoch [1589/3000], train_loss: 2.0687, valid_loss: 1.4504
Epoch [1590/3000], train_loss: 2.1019, valid_loss: 1.4345
Epoch [1591/3000], train_loss: 1.9329, valid_loss: 1.4195
Epoch [1592/3000], train_loss: 2.3147, valid_loss: 1.4202
Epoch [1593/3000], train_loss: 2.2137, valid_loss: 1.3605
Epoch [1594/3000], train_loss: 2.0403, valid_loss: 1.5037
Epoch [1595/3000], train_loss: 2.0505, valid_loss: 1.3974
Epoch [1596/3000], train_loss: 2.0860, valid_loss: 1.5406
Epoch [1597/3000], train_loss: 2.2125, valid_loss: 1.4339
Epoch [1598/3000], train_loss: 2.0217, valid_loss: 1.4452
Epoch [1599/3000], train_loss: 2.0712, valid_loss: 1.4329
Epoch [1600/3000], train_loss: 2.0828, valid_loss: 1.2771
Epoch [1601/3000], train_loss: 1.9438, valid_loss: 1.3187
Epoch [1602/3000], train_loss: 2.2414, valid_loss: 1.2892
Epoch [1603/3000], train_loss: 2.2885, valid_loss: 1.3890
Epoch [1604/3000], train_loss: 2.0913, valid_loss: 1.3670
Epoch [1605/3000], train_loss: 2.3954, valid_loss: 1.2892
Epoch [1606/3000], train_loss: 2.0763, valid_loss: 1.4847
Epoch [1607/3000], train_loss: 2.2194, valid_loss: 1.2871
Epoch [1608/3000], train_loss: 2.2465, valid_loss: 1.3881
Epoch [1609/3000], train_loss: 1.9860, valid_loss: 2.0339
Epoch [1610/3000], train_loss: 2.1823, valid_loss: 1.5332
Epoch [1611/3000], train_loss: 2.1004, valid_loss: 1.3845
Epoch [1612/3000], train_loss: 2.0021, valid_loss: 1.3625
Epoch [1613/3000], train_loss: 2.0929, valid_loss: 1.3916
Epoch [1614/3000], train_loss: 2.2283, valid_loss: 1.7005
Epoch [1615/3000], train_loss: 2.0989, valid_loss: 1.8611
Epoch [1616/3000], train_loss: 2.1769, valid_loss: 1.4872
Epoch [1617/3000], train_loss: 2.1718, valid_loss: 1.3863
Epoch [1618/3000], train_loss: 1.8899, valid_loss: 1.4549
Epoch [1619/3000], train_loss: 2.2624, valid_loss: 1.4730
Epoch [1620/3000], train_loss: 2.0550, valid_loss: 1.5734
Epoch [1621/3000], train_loss: 1.8399, valid_loss: 1.3850
Epoch [1622/3000], train_loss: 2.2425, valid_loss: 1.1875
Save model at epoch 1622 with loss 1.1875
Epoch [1623/3000], train_loss: 2.0239, valid_loss: 1.7499
Epoch [1624/3000], train_loss: 2.1773, valid_loss: 1.6061
Epoch [1625/3000], train_loss: 1.9165, valid_loss: 1.4620
Epoch [1626/3000], train_loss: 1.9625, valid_loss: 1.5140
Epoch [1627/3000], train_loss: 2.8600, valid_loss: 1.5148
Epoch [1628/3000], train_loss: 1.9696, valid_loss: 1.6281
Epoch [1629/3000], train_loss: 2.0281, valid_loss: 1.3595
Epoch [1630/3000], train_loss: 2.2712, valid_loss: 1.5059
Epoch [1631/3000], train_loss: 1.9568, valid_loss: 1.4831
Epoch [1632/3000], train_loss: 2.0687, valid_loss: 1.6464
Epoch [1633/3000], train_loss: 2.0201, valid_loss: 1.3335
Epoch [1634/3000], train_loss: 2.3003, valid_loss: 1.3665
Epoch [1635/3000], train_loss: 2.5545, valid_loss: 1.3759
Epoch [1636/3000], train_loss: 1.9210, valid_loss: 1.4070
Epoch [1637/3000], train_loss: 2.2139, valid_loss: 1.2492
Epoch [1638/3000], train_loss: 1.8087, valid_loss: 1.3721
Epoch [1639/3000], train_loss: 2.0020, valid_loss: 1.4396
Epoch [1640/3000], train_loss: 2.2169, valid_loss: 1.2167
Epoch [1641/3000], train_loss: 2.4434, valid_loss: 1.2970
Epoch [1642/3000], train_loss: 1.9682, valid_loss: 1.4342
Epoch [1643/3000], train_loss: 2.0073, valid_loss: 1.4482
Epoch [1644/3000], train_loss: 2.1545, valid_loss: 1.6253
Epoch [1645/3000], train_loss: 2.0754, valid_loss: 1.4072
Epoch [1646/3000], train_loss: 2.3329, valid_loss: 1.3054
Epoch [1647/3000], train_loss: 2.2887, valid_loss: 1.2967
Epoch [1648/3000], train_loss: 2.0136, valid_loss: 1.5230
Epoch [1649/3000], train_loss: 2.2865, valid_loss: 1.2637
Epoch [1650/3000], train_loss: 2.0810, valid_loss: 1.5168
Epoch [1651/3000], train_loss: 2.5683, valid_loss: 1.3535
Epoch [1652/3000], train_loss: 2.3221, valid_loss: 1.5908
Epoch [1653/3000], train_loss: 2.0992, valid_loss: 1.7096
Epoch [1654/3000], train_loss: 1.8657, valid_loss: 1.4195
Epoch [1655/3000], train_loss: 2.0773, valid_loss: 1.3941
Epoch [1656/3000], train_loss: 2.0600, valid_loss: 1.2687
Epoch [1657/3000], train_loss: 1.9238, valid_loss: 1.2591
Epoch [1658/3000], train_loss: 1.9233, valid_loss: 1.4254
Epoch [1659/3000], train_loss: 1.8084, valid_loss: 1.6238
Epoch [1660/3000], train_loss: 2.0645, valid_loss: 1.2733
Epoch [1661/3000], train_loss: 2.1070, valid_loss: 1.4081
Epoch [1662/3000], train_loss: 2.1634, valid_loss: 1.3427
Epoch [1663/3000], train_loss: 2.0225, valid_loss: 1.2981
Epoch [1664/3000], train_loss: 2.1081, valid_loss: 1.4476
Epoch [1665/3000], train_loss: 2.1005, valid_loss: 1.2429
Epoch [1666/3000], train_loss: 2.0412, valid_loss: 1.4358
Epoch [1667/3000], train_loss: 1.9718, valid_loss: 1.6197
Epoch [1668/3000], train_loss: 2.1697, valid_loss: 1.4008
Epoch [1669/3000], train_loss: 2.1293, valid_loss: 1.2606
Epoch [1670/3000], train_loss: 2.1062, valid_loss: 1.5256
Epoch [1671/3000], train_loss: 1.8885, valid_loss: 1.4500
Epoch [1672/3000], train_loss: 1.9665, valid_loss: 1.5319
Epoch [1673/3000], train_loss: 2.3758, valid_loss: 1.3534
Epoch [1674/3000], train_loss: 2.1975, valid_loss: 1.4245
Epoch [1675/3000], train_loss: 2.3204, valid_loss: 1.6766
Epoch [1676/3000], train_loss: 1.9583, valid_loss: 1.3592
Epoch [1677/3000], train_loss: 2.0491, valid_loss: 1.2791
Epoch [1678/3000], train_loss: 2.0208, valid_loss: 1.3927
Epoch [1679/3000], train_loss: 2.0923, valid_loss: 1.4163
Epoch [1680/3000], train_loss: 1.9245, valid_loss: 1.5151
Epoch [1681/3000], train_loss: 1.9379, valid_loss: 1.3955
Epoch [1682/3000], train_loss: 2.4770, valid_loss: 1.1670
Save model at epoch 1682 with loss 1.1670
Epoch [1683/3000], train_loss: 2.0387, valid_loss: 1.2771
Epoch [1684/3000], train_loss: 2.1888, valid_loss: 1.2923
Epoch [1685/3000], train_loss: 2.1234, valid_loss: 1.2982
Epoch [1686/3000], train_loss: 2.0500, valid_loss: 1.5583
Epoch [1687/3000], train_loss: 2.0942, valid_loss: 1.5177
Epoch [1688/3000], train_loss: 2.4385, valid_loss: 1.8164
Epoch [1689/3000], train_loss: 2.1100, valid_loss: 1.4468
Epoch [1690/3000], train_loss: 2.3205, valid_loss: 1.6234
Epoch [1691/3000], train_loss: 2.0102, valid_loss: 1.4917
Epoch [1692/3000], train_loss: 1.9779, valid_loss: 1.6877
Epoch [1693/3000], train_loss: 1.9391, valid_loss: 1.3591
Epoch [1694/3000], train_loss: 1.9819, valid_loss: 1.4330
Epoch [1695/3000], train_loss: 2.1000, valid_loss: 1.4816
Epoch [1696/3000], train_loss: 2.0323, valid_loss: 1.3139
Epoch [1697/3000], train_loss: 1.9955, valid_loss: 1.3171
Epoch [1698/3000], train_loss: 2.0648, valid_loss: 1.2316
Epoch [1699/3000], train_loss: 2.1135, valid_loss: 1.3855
Epoch [1700/3000], train_loss: 2.4607, valid_loss: 1.3521
Epoch [1701/3000], train_loss: 2.0304, valid_loss: 1.3298
Epoch [1702/3000], train_loss: 1.9564, valid_loss: 1.2324
Epoch [1703/3000], train_loss: 2.0552, valid_loss: 1.8634
Epoch [1704/3000], train_loss: 1.9339, valid_loss: 1.1727
Epoch [1705/3000], train_loss: 2.0044, valid_loss: 1.3423
Epoch [1706/3000], train_loss: 2.0741, valid_loss: 1.3823
Epoch [1707/3000], train_loss: 2.1934, valid_loss: 1.3293
Epoch [1708/3000], train_loss: 2.3414, valid_loss: 1.4624
Epoch [1709/3000], train_loss: 2.1782, valid_loss: 1.2640
Epoch [1710/3000], train_loss: 2.0171, valid_loss: 1.6361
Epoch [1711/3000], train_loss: 2.1494, valid_loss: 1.2435
Epoch [1712/3000], train_loss: 1.8174, valid_loss: 1.3564
Epoch [1713/3000], train_loss: 1.9749, valid_loss: 1.5077
Epoch [1714/3000], train_loss: 2.0029, valid_loss: 1.2307
Epoch [1715/3000], train_loss: 1.9111, valid_loss: 1.3831
Epoch [1716/3000], train_loss: 1.9956, valid_loss: 1.4483
Epoch [1717/3000], train_loss: 2.3781, valid_loss: 1.4356
Epoch [1718/3000], train_loss: 2.1448, valid_loss: 1.3550
Epoch [1719/3000], train_loss: 2.0002, valid_loss: 1.3107
Epoch [1720/3000], train_loss: 1.9926, valid_loss: 1.5294
Epoch [1721/3000], train_loss: 2.2693, valid_loss: 1.6294
Epoch [1722/3000], train_loss: 2.0026, valid_loss: 1.5954
Epoch [1723/3000], train_loss: 2.3647, valid_loss: 1.2196
Epoch [1724/3000], train_loss: 2.1779, valid_loss: 1.3035
Epoch [1725/3000], train_loss: 1.9508, valid_loss: 1.3990
Epoch [1726/3000], train_loss: 1.9425, valid_loss: 1.3215
Epoch [1727/3000], train_loss: 2.0481, valid_loss: 1.5268
Epoch [1728/3000], train_loss: 2.0135, valid_loss: 1.5960
Epoch [1729/3000], train_loss: 1.8711, valid_loss: 1.4153
Epoch [1730/3000], train_loss: 2.3776, valid_loss: 1.5692
Epoch [1731/3000], train_loss: 1.8973, valid_loss: 1.3455
Epoch [1732/3000], train_loss: 1.9886, valid_loss: 1.4406
Epoch [1733/3000], train_loss: 2.0333, valid_loss: 1.3581
Epoch [1734/3000], train_loss: 2.1739, valid_loss: 1.3915
Epoch [1735/3000], train_loss: 2.2612, valid_loss: 1.2538
Epoch [1736/3000], train_loss: 2.0372, valid_loss: 1.3765
Epoch [1737/3000], train_loss: 1.9041, valid_loss: 1.6274
Epoch [1738/3000], train_loss: 1.9829, valid_loss: 1.3020
Epoch [1739/3000], train_loss: 2.1231, valid_loss: 1.4259
Epoch [1740/3000], train_loss: 1.9281, valid_loss: 1.5150
Epoch [1741/3000], train_loss: 2.0955, valid_loss: 1.3669
Epoch [1742/3000], train_loss: 2.0226, valid_loss: 1.4096
Epoch [1743/3000], train_loss: 2.5642, valid_loss: 1.1874
Epoch [1744/3000], train_loss: 1.8604, valid_loss: 1.3646
Epoch [1745/3000], train_loss: 1.9514, valid_loss: 1.4188
Epoch [1746/3000], train_loss: 2.4716, valid_loss: 1.5949
Epoch [1747/3000], train_loss: 2.1690, valid_loss: 1.2893
Epoch [1748/3000], train_loss: 2.1638, valid_loss: 1.6108
Epoch [1749/3000], train_loss: 1.9079, valid_loss: 1.4260
Epoch [1750/3000], train_loss: 2.0059, valid_loss: 1.5356
Epoch [1751/3000], train_loss: 2.0250, valid_loss: 1.6534
Epoch [1752/3000], train_loss: 1.9478, valid_loss: 1.4745
Epoch [1753/3000], train_loss: 1.9594, valid_loss: 1.3229
Epoch [1754/3000], train_loss: 2.2082, valid_loss: 1.4408
Epoch [1755/3000], train_loss: 1.8715, valid_loss: 1.1907
Epoch [1756/3000], train_loss: 2.0906, valid_loss: 1.3256
Epoch [1757/3000], train_loss: 2.1000, valid_loss: 1.6210
Epoch [1758/3000], train_loss: 2.1682, valid_loss: 1.6344
Epoch [1759/3000], train_loss: 2.0195, valid_loss: 1.4758
Epoch [1760/3000], train_loss: 1.9595, valid_loss: 1.2272
Epoch [1761/3000], train_loss: 1.9715, valid_loss: 1.4215
Epoch [1762/3000], train_loss: 1.7318, valid_loss: 1.3062
Epoch [1763/3000], train_loss: 2.0433, valid_loss: 1.3497
Epoch [1764/3000], train_loss: 1.8498, valid_loss: 1.5078
Epoch [1765/3000], train_loss: 1.9085, valid_loss: 1.3912
Epoch [1766/3000], train_loss: 1.9532, valid_loss: 1.2153
Epoch [1767/3000], train_loss: 2.0514, valid_loss: 1.4989
Epoch [1768/3000], train_loss: 2.3929, valid_loss: 1.6159
Epoch [1769/3000], train_loss: 1.9962, valid_loss: 1.2879
Epoch [1770/3000], train_loss: 1.9095, valid_loss: 1.7989
Epoch [1771/3000], train_loss: 2.3999, valid_loss: 1.3950
Epoch [1772/3000], train_loss: 2.0828, valid_loss: 1.4316
Epoch [1773/3000], train_loss: 1.9323, valid_loss: 1.5172
Epoch [1774/3000], train_loss: 1.9145, valid_loss: 1.2891
Epoch [1775/3000], train_loss: 2.0329, valid_loss: 1.5143
Epoch [1776/3000], train_loss: 1.8641, valid_loss: 1.2659
Epoch [1777/3000], train_loss: 1.9652, valid_loss: 1.2981
Epoch [1778/3000], train_loss: 1.9169, valid_loss: 1.1819
Epoch [1779/3000], train_loss: 1.9443, valid_loss: 1.4910
Epoch [1780/3000], train_loss: 1.9706, valid_loss: 1.5509
Epoch [1781/3000], train_loss: 2.3174, valid_loss: 1.2476
Epoch [1782/3000], train_loss: 2.4617, valid_loss: 1.3079
Epoch [1783/3000], train_loss: 2.0103, valid_loss: 1.7455
Epoch [1784/3000], train_loss: 1.8271, valid_loss: 1.3163
Epoch [1785/3000], train_loss: 1.9046, valid_loss: 1.5216
Epoch [1786/3000], train_loss: 1.9858, valid_loss: 1.3165
Epoch [1787/3000], train_loss: 2.1038, valid_loss: 1.5878
Epoch [1788/3000], train_loss: 1.9113, valid_loss: 1.4918
Epoch [1789/3000], train_loss: 1.8645, valid_loss: 1.3067
Epoch [1790/3000], train_loss: 2.1233, valid_loss: 1.4154
Epoch [1791/3000], train_loss: 1.8769, valid_loss: 1.3250
Epoch [1792/3000], train_loss: 1.9214, valid_loss: 1.6615
Epoch [1793/3000], train_loss: 2.2241, valid_loss: 1.5539
Epoch [1794/3000], train_loss: 2.0100, valid_loss: 1.4999
Epoch [1795/3000], train_loss: 2.1456, valid_loss: 1.3446
Epoch [1796/3000], train_loss: 1.8098, valid_loss: 1.5337
Epoch [1797/3000], train_loss: 2.1239, valid_loss: 1.3814
Epoch [1798/3000], train_loss: 1.8536, valid_loss: 1.3590
Epoch [1799/3000], train_loss: 2.2123, valid_loss: 1.4045
Epoch [1800/3000], train_loss: 1.8864, valid_loss: 1.5622
Epoch [1801/3000], train_loss: 2.3248, valid_loss: 1.3817
Epoch [1802/3000], train_loss: 1.8921, valid_loss: 1.3537
Epoch [1803/3000], train_loss: 2.0153, valid_loss: 1.4726
Epoch [1804/3000], train_loss: 1.7867, valid_loss: 1.2456
Epoch [1805/3000], train_loss: 2.1285, valid_loss: 1.3029
Epoch [1806/3000], train_loss: 1.8948, valid_loss: 1.1030
Save model at epoch 1806 with loss 1.1030
Epoch [1807/3000], train_loss: 2.2011, valid_loss: 1.4123
Epoch [1808/3000], train_loss: 1.8751, valid_loss: 1.2087
Epoch [1809/3000], train_loss: 2.0688, valid_loss: 1.4839
Epoch [1810/3000], train_loss: 2.3287, valid_loss: 1.9769
Epoch [1811/3000], train_loss: 1.8893, valid_loss: 1.3524
Epoch [1812/3000], train_loss: 1.8555, valid_loss: 1.3616
Epoch [1813/3000], train_loss: 2.0267, valid_loss: 1.4556
Epoch [1814/3000], train_loss: 1.9670, valid_loss: 1.2144
Epoch [1815/3000], train_loss: 1.7459, valid_loss: 1.4501
Epoch [1816/3000], train_loss: 1.9698, valid_loss: 1.3726
Epoch [1817/3000], train_loss: 1.8997, valid_loss: 1.2758
Epoch [1818/3000], train_loss: 1.8903, valid_loss: 1.5060
Epoch [1819/3000], train_loss: 1.9484, valid_loss: 1.8242
Epoch [1820/3000], train_loss: 2.1594, valid_loss: 1.3412
Epoch [1821/3000], train_loss: 1.9757, valid_loss: 1.3245
Epoch [1822/3000], train_loss: 1.8220, valid_loss: 1.4835
Epoch [1823/3000], train_loss: 1.9394, valid_loss: 1.6634
Epoch [1824/3000], train_loss: 1.9593, valid_loss: 1.2348
Epoch [1825/3000], train_loss: 2.0050, valid_loss: 1.3541
Epoch [1826/3000], train_loss: 2.0345, valid_loss: 1.4021
Epoch [1827/3000], train_loss: 2.1019, valid_loss: 1.3787
Epoch [1828/3000], train_loss: 2.0272, valid_loss: 1.3115
Epoch [1829/3000], train_loss: 2.0884, valid_loss: 1.4152
Epoch [1830/3000], train_loss: 1.9608, valid_loss: 1.2190
Epoch [1831/3000], train_loss: 1.9704, valid_loss: 1.4653
Epoch [1832/3000], train_loss: 2.3265, valid_loss: 1.6019
Epoch [1833/3000], train_loss: 2.0061, valid_loss: 1.5211
Epoch [1834/3000], train_loss: 2.0503, valid_loss: 1.3487
Epoch [1835/3000], train_loss: 2.0609, valid_loss: 1.4709
Epoch [1836/3000], train_loss: 2.1107, valid_loss: 1.5136
Epoch [1837/3000], train_loss: 1.7970, valid_loss: 1.3482
Epoch [1838/3000], train_loss: 2.0713, valid_loss: 1.2314
Epoch [1839/3000], train_loss: 2.0985, valid_loss: 1.5766
Epoch [1840/3000], train_loss: 2.0106, valid_loss: 1.2201
Epoch [1841/3000], train_loss: 1.8974, valid_loss: 1.3767
Epoch [1842/3000], train_loss: 1.8174, valid_loss: 1.2453
Epoch [1843/3000], train_loss: 1.8718, valid_loss: 1.3203
Epoch [1844/3000], train_loss: 1.8530, valid_loss: 1.4646
Epoch [1845/3000], train_loss: 2.2359, valid_loss: 1.6064
Epoch [1846/3000], train_loss: 2.2247, valid_loss: 1.4306
Epoch [1847/3000], train_loss: 2.0988, valid_loss: 1.4130
Epoch [1848/3000], train_loss: 1.8434, valid_loss: 1.7905
Epoch [1849/3000], train_loss: 2.0238, valid_loss: 1.3292
Epoch [1850/3000], train_loss: 1.8886, valid_loss: 1.4077
Epoch [1851/3000], train_loss: 1.9804, valid_loss: 1.6544
Epoch [1852/3000], train_loss: 1.7666, valid_loss: 1.4107
Epoch [1853/3000], train_loss: 1.9838, valid_loss: 1.3674
Epoch [1854/3000], train_loss: 1.9320, valid_loss: 1.2334
Epoch [1855/3000], train_loss: 1.8623, valid_loss: 1.4812
Epoch [1856/3000], train_loss: 2.2082, valid_loss: 1.4118
Epoch [1857/3000], train_loss: 1.9099, valid_loss: 1.4729
Epoch [1858/3000], train_loss: 2.1288, valid_loss: 1.3752
Epoch [1859/3000], train_loss: 2.1647, valid_loss: 1.5194
Epoch [1860/3000], train_loss: 1.9179, valid_loss: 1.3776
Epoch [1861/3000], train_loss: 2.0231, valid_loss: 1.3023
Epoch [1862/3000], train_loss: 2.1628, valid_loss: 1.2850
Epoch [1863/3000], train_loss: 2.0381, valid_loss: 1.4086
Epoch [1864/3000], train_loss: 1.9546, valid_loss: 1.3514
Epoch [1865/3000], train_loss: 1.9207, valid_loss: 1.3670
Epoch [1866/3000], train_loss: 1.9572, valid_loss: 1.5150
Epoch [1867/3000], train_loss: 1.9929, valid_loss: 1.4343
Epoch [1868/3000], train_loss: 1.7283, valid_loss: 1.6300
Epoch [1869/3000], train_loss: 1.9103, valid_loss: 1.2511
Epoch [1870/3000], train_loss: 2.1212, valid_loss: 1.2686
Epoch [1871/3000], train_loss: 1.8205, valid_loss: 1.3374
Epoch [1872/3000], train_loss: 2.1156, valid_loss: 1.3907
Epoch [1873/3000], train_loss: 2.0316, valid_loss: 1.4672
Epoch [1874/3000], train_loss: 2.0969, valid_loss: 1.5583
Epoch [1875/3000], train_loss: 1.9326, valid_loss: 1.4784
Epoch [1876/3000], train_loss: 2.0400, valid_loss: 1.2410
Epoch [1877/3000], train_loss: 1.9235, valid_loss: 1.3960
Epoch [1878/3000], train_loss: 1.9713, valid_loss: 1.5049
Epoch [1879/3000], train_loss: 2.1569, valid_loss: 1.4319
Epoch [1880/3000], train_loss: 1.9471, valid_loss: 1.2681
Epoch [1881/3000], train_loss: 1.9918, valid_loss: 1.7356
Epoch [1882/3000], train_loss: 1.9941, valid_loss: 1.5176
Epoch [1883/3000], train_loss: 1.8652, valid_loss: 1.2862
Epoch [1884/3000], train_loss: 1.9622, valid_loss: 1.2830
Epoch [1885/3000], train_loss: 1.8381, valid_loss: 1.3611
Epoch [1886/3000], train_loss: 2.0865, valid_loss: 1.5184
Epoch [1887/3000], train_loss: 2.0041, valid_loss: 1.3152
Epoch [1888/3000], train_loss: 2.1373, valid_loss: 1.2371
Epoch [1889/3000], train_loss: 1.8587, valid_loss: 1.6544
Epoch [1890/3000], train_loss: 2.1238, valid_loss: 1.2088
Epoch [1891/3000], train_loss: 1.9580, valid_loss: 1.2974
Epoch [1892/3000], train_loss: 1.8299, valid_loss: 1.3236
Epoch [1893/3000], train_loss: 1.7651, valid_loss: 1.3256
Epoch [1894/3000], train_loss: 1.9139, valid_loss: 1.3150
Epoch [1895/3000], train_loss: 2.0341, valid_loss: 1.4600
Epoch [1896/3000], train_loss: 1.8838, valid_loss: 1.5019
Epoch [1897/3000], train_loss: 2.0243, valid_loss: 1.5477
Epoch [1898/3000], train_loss: 1.8578, valid_loss: 1.2506
Epoch [1899/3000], train_loss: 1.9250, valid_loss: 1.2673
Epoch [1900/3000], train_loss: 2.0101, valid_loss: 1.4983
Epoch [1901/3000], train_loss: 1.8522, valid_loss: 1.3870
Epoch [1902/3000], train_loss: 1.9740, valid_loss: 1.3329
Epoch [1903/3000], train_loss: 1.9212, valid_loss: 1.1894
Epoch [1904/3000], train_loss: 1.8504, valid_loss: 1.2743
Epoch [1905/3000], train_loss: 1.8225, valid_loss: 1.2431
Epoch [1906/3000], train_loss: 2.0256, valid_loss: 1.3446
Epoch [1907/3000], train_loss: 1.9548, valid_loss: 1.5116
Epoch [1908/3000], train_loss: 1.8022, valid_loss: 1.4456
Epoch [1909/3000], train_loss: 2.2908, valid_loss: 1.2415
Epoch [1910/3000], train_loss: 1.9808, valid_loss: 1.2153
Epoch [1911/3000], train_loss: 1.8734, valid_loss: 1.2359
Epoch [1912/3000], train_loss: 1.9530, valid_loss: 1.3025
Epoch [1913/3000], train_loss: 2.0269, valid_loss: 1.3498
Epoch [1914/3000], train_loss: 1.9055, valid_loss: 1.3176
Epoch [1915/3000], train_loss: 1.8814, valid_loss: 1.1767
Epoch [1916/3000], train_loss: 1.9764, valid_loss: 1.1612
Epoch [1917/3000], train_loss: 1.7347, valid_loss: 1.3898
Epoch [1918/3000], train_loss: 1.9220, valid_loss: 1.3254
Epoch [1919/3000], train_loss: 1.8239, valid_loss: 1.5829
Epoch [1920/3000], train_loss: 2.0905, valid_loss: 1.4395
Epoch [1921/3000], train_loss: 1.8527, valid_loss: 1.4526
Epoch [1922/3000], train_loss: 1.9358, valid_loss: 1.2432
Epoch [1923/3000], train_loss: 1.9630, valid_loss: 1.3599
Epoch [1924/3000], train_loss: 1.9715, valid_loss: 1.2284
Epoch [1925/3000], train_loss: 1.8127, valid_loss: 1.4880
Epoch [1926/3000], train_loss: 1.8184, valid_loss: 1.5486
Epoch [1927/3000], train_loss: 1.8470, valid_loss: 1.2976
Epoch [1928/3000], train_loss: 2.1148, valid_loss: 1.3181
Epoch [1929/3000], train_loss: 1.8591, valid_loss: 1.3043
Epoch [1930/3000], train_loss: 2.0740, valid_loss: 1.3379
Epoch [1931/3000], train_loss: 1.8883, valid_loss: 1.4786
Epoch [1932/3000], train_loss: 2.0650, valid_loss: 1.2286
Epoch [1933/3000], train_loss: 1.8787, valid_loss: 1.5110
Epoch [1934/3000], train_loss: 2.0549, valid_loss: 1.6259
Epoch [1935/3000], train_loss: 2.1462, valid_loss: 1.4208
Epoch [1936/3000], train_loss: 1.8756, valid_loss: 1.2765
Epoch [1937/3000], train_loss: 1.9073, valid_loss: 1.4266
Epoch [1938/3000], train_loss: 2.1748, valid_loss: 1.7551
Epoch [1939/3000], train_loss: 2.1615, valid_loss: 1.6342
Epoch [1940/3000], train_loss: 1.9669, valid_loss: 1.7747
Epoch [1941/3000], train_loss: 1.9395, valid_loss: 1.5482
Epoch [1942/3000], train_loss: 1.8339, valid_loss: 1.1891
Epoch [1943/3000], train_loss: 1.8482, valid_loss: 1.4986
Epoch [1944/3000], train_loss: 1.9691, valid_loss: 1.6376
Epoch [1945/3000], train_loss: 1.7612, valid_loss: 1.3224
Epoch [1946/3000], train_loss: 1.7628, valid_loss: 1.4386
Epoch [1947/3000], train_loss: 1.9100, valid_loss: 1.3986
Epoch [1948/3000], train_loss: 2.0625, valid_loss: 1.3576
Epoch [1949/3000], train_loss: 1.7020, valid_loss: 1.3567
Epoch [1950/3000], train_loss: 1.7489, valid_loss: 1.4686
Epoch [1951/3000], train_loss: 1.8333, valid_loss: 1.6915
Epoch [1952/3000], train_loss: 2.1419, valid_loss: 1.2057
Epoch [1953/3000], train_loss: 1.9808, valid_loss: 1.1650
Epoch [1954/3000], train_loss: 2.1664, valid_loss: 1.5945
Epoch [1955/3000], train_loss: 1.9269, valid_loss: 1.3894
Epoch [1956/3000], train_loss: 1.9809, valid_loss: 1.7246
Epoch [1957/3000], train_loss: 1.8775, valid_loss: 1.1406
Epoch [1958/3000], train_loss: 1.8892, valid_loss: 1.0814
Save model at epoch 1958 with loss 1.0814
Epoch [1959/3000], train_loss: 1.7739, valid_loss: 1.1279
Epoch [1960/3000], train_loss: 1.8627, valid_loss: 1.5562
Epoch [1961/3000], train_loss: 1.9377, valid_loss: 1.7084
Epoch [1962/3000], train_loss: 1.9436, valid_loss: 1.4465
Epoch [1963/3000], train_loss: 1.8109, valid_loss: 1.2357
Epoch [1964/3000], train_loss: 2.4035, valid_loss: 1.1394
Epoch [1965/3000], train_loss: 2.0342, valid_loss: 1.5179
Epoch [1966/3000], train_loss: 2.1601, valid_loss: 1.5748
Epoch [1967/3000], train_loss: 2.1259, valid_loss: 1.6709
Epoch [1968/3000], train_loss: 1.8557, valid_loss: 1.3384
Epoch [1969/3000], train_loss: 1.9266, valid_loss: 1.4287
Epoch [1970/3000], train_loss: 1.8805, valid_loss: 1.1981
Epoch [1971/3000], train_loss: 1.9065, valid_loss: 1.2965
Epoch [1972/3000], train_loss: 1.9182, valid_loss: 1.2599
Epoch [1973/3000], train_loss: 1.9614, valid_loss: 1.3463
Epoch [1974/3000], train_loss: 2.0638, valid_loss: 1.2354
Epoch [1975/3000], train_loss: 1.8209, valid_loss: 1.6259
Epoch [1976/3000], train_loss: 1.8610, valid_loss: 1.4595
Epoch [1977/3000], train_loss: 1.8654, valid_loss: 1.4862
Epoch [1978/3000], train_loss: 2.2305, valid_loss: 1.2044
Epoch [1979/3000], train_loss: 2.1815, valid_loss: 1.3219
Epoch [1980/3000], train_loss: 2.0053, valid_loss: 1.3038
Epoch [1981/3000], train_loss: 1.8320, valid_loss: 1.3117
Epoch [1982/3000], train_loss: 1.9976, valid_loss: 1.1458
Epoch [1983/3000], train_loss: 1.9429, valid_loss: 1.4748
Epoch [1984/3000], train_loss: 2.0479, valid_loss: 1.5782
Epoch [1985/3000], train_loss: 1.8429, valid_loss: 1.4981
Epoch [1986/3000], train_loss: 2.1978, valid_loss: 1.2540
Epoch [1987/3000], train_loss: 1.9910, valid_loss: 1.4496
Epoch [1988/3000], train_loss: 2.0265, valid_loss: 1.6666
Epoch [1989/3000], train_loss: 1.7579, valid_loss: 1.6796
Epoch [1990/3000], train_loss: 1.9079, valid_loss: 1.9790
Epoch [1991/3000], train_loss: 2.0522, valid_loss: 1.3590
Epoch [1992/3000], train_loss: 2.0628, valid_loss: 1.5401
Epoch [1993/3000], train_loss: 2.0967, valid_loss: 1.2951
Epoch [1994/3000], train_loss: 1.9445, valid_loss: 1.2232
Epoch [1995/3000], train_loss: 2.2394, valid_loss: 1.3910
Epoch [1996/3000], train_loss: 1.7955, valid_loss: 1.1294
Epoch [1997/3000], train_loss: 2.0024, valid_loss: 1.5163
Epoch [1998/3000], train_loss: 2.1191, valid_loss: 1.1801
Epoch [1999/3000], train_loss: 1.9030, valid_loss: 1.6245
Epoch [2000/3000], train_loss: 2.3653, valid_loss: 1.5378
Epoch [2001/3000], train_loss: 1.9415, valid_loss: 1.4484
Epoch [2002/3000], train_loss: 2.0040, valid_loss: 1.5095
Epoch [2003/3000], train_loss: 1.9401, valid_loss: 1.5656
Epoch [2004/3000], train_loss: 1.7612, valid_loss: 1.3649
Epoch [2005/3000], train_loss: 2.0179, valid_loss: 1.4649
Epoch [2006/3000], train_loss: 1.8463, valid_loss: 1.3551
Epoch [2007/3000], train_loss: 2.1615, valid_loss: 1.7411
Epoch [2008/3000], train_loss: 1.8633, valid_loss: 1.4296
Epoch [2009/3000], train_loss: 2.0067, valid_loss: 1.5458
Epoch [2010/3000], train_loss: 1.8124, valid_loss: 1.3646
Epoch [2011/3000], train_loss: 1.8422, valid_loss: 1.2717
Epoch [2012/3000], train_loss: 1.8558, valid_loss: 1.2837
Epoch [2013/3000], train_loss: 1.8861, valid_loss: 1.1745
Epoch [2014/3000], train_loss: 1.7662, valid_loss: 1.3028
Epoch [2015/3000], train_loss: 1.9640, valid_loss: 1.5603
Epoch [2016/3000], train_loss: 1.9186, valid_loss: 1.3827
Epoch [2017/3000], train_loss: 1.9465, valid_loss: 1.5674
Epoch [2018/3000], train_loss: 1.8637, valid_loss: 1.5278
Epoch [2019/3000], train_loss: 2.0847, valid_loss: 1.2150
Epoch [2020/3000], train_loss: 1.7008, valid_loss: 1.3865
Epoch [2021/3000], train_loss: 1.9331, valid_loss: 1.3737
Epoch [2022/3000], train_loss: 1.8208, valid_loss: 1.6353
Epoch [2023/3000], train_loss: 1.7684, valid_loss: 1.6216
Epoch [2024/3000], train_loss: 2.0072, valid_loss: 1.3865
Epoch [2025/3000], train_loss: 2.0185, valid_loss: 1.1846
Epoch [2026/3000], train_loss: 1.7503, valid_loss: 1.2807
Epoch [2027/3000], train_loss: 1.7753, valid_loss: 1.2814
Epoch [2028/3000], train_loss: 1.8894, valid_loss: 1.4067
Epoch [2029/3000], train_loss: 1.7172, valid_loss: 1.5098
Epoch [2030/3000], train_loss: 2.3176, valid_loss: 1.2710
Epoch [2031/3000], train_loss: 1.7897, valid_loss: 1.0739
Save model at epoch 2031 with loss 1.0739
Epoch [2032/3000], train_loss: 1.8606, valid_loss: 1.2900
Epoch [2033/3000], train_loss: 1.8926, valid_loss: 1.4970
Epoch [2034/3000], train_loss: 1.6790, valid_loss: 1.3717
Epoch [2035/3000], train_loss: 1.9031, valid_loss: 1.2540
Epoch [2036/3000], train_loss: 1.9290, valid_loss: 1.6225
Epoch [2037/3000], train_loss: 1.7692, valid_loss: 1.3455
Epoch [2038/3000], train_loss: 1.8084, valid_loss: 1.1722
Epoch [2039/3000], train_loss: 1.9958, valid_loss: 1.5576
Epoch [2040/3000], train_loss: 2.0147, valid_loss: 1.3596
Epoch [2041/3000], train_loss: 1.9958, valid_loss: 1.6893
Epoch [2042/3000], train_loss: 1.9286, valid_loss: 1.6235
Epoch [2043/3000], train_loss: 2.0315, valid_loss: 1.2751
Epoch [2044/3000], train_loss: 2.1505, valid_loss: 1.2162
Epoch [2045/3000], train_loss: 2.0708, valid_loss: 1.3771
Epoch [2046/3000], train_loss: 1.9192, valid_loss: 1.6364
Epoch [2047/3000], train_loss: 1.7619, valid_loss: 1.3399
Epoch [2048/3000], train_loss: 1.9973, valid_loss: 1.4279
Epoch [2049/3000], train_loss: 1.7260, valid_loss: 1.3924
Epoch [2050/3000], train_loss: 1.8316, valid_loss: 1.4504
Epoch [2051/3000], train_loss: 1.9518, valid_loss: 1.3192
Epoch [2052/3000], train_loss: 1.9166, valid_loss: 1.1942
Epoch [2053/3000], train_loss: 1.8759, valid_loss: 1.3409
Epoch [2054/3000], train_loss: 2.0835, valid_loss: 1.2249
Epoch [2055/3000], train_loss: 1.8383, valid_loss: 1.3227
Epoch [2056/3000], train_loss: 1.8793, valid_loss: 1.2359
Epoch [2057/3000], train_loss: 1.9944, valid_loss: 1.4107
Epoch [2058/3000], train_loss: 1.8193, valid_loss: 1.2830
Epoch [2059/3000], train_loss: 1.8837, valid_loss: 1.4244
Epoch [2060/3000], train_loss: 1.9327, valid_loss: 1.2661
Epoch [2061/3000], train_loss: 2.1602, valid_loss: 1.3259
Epoch [2062/3000], train_loss: 1.8476, valid_loss: 1.4101
Epoch [2063/3000], train_loss: 1.9446, valid_loss: 1.5217
Epoch [2064/3000], train_loss: 1.8516, valid_loss: 1.5813
Epoch [2065/3000], train_loss: 1.9732, valid_loss: 1.2636
Epoch [2066/3000], train_loss: 1.9876, valid_loss: 1.3446
Epoch [2067/3000], train_loss: 1.7633, valid_loss: 1.8481
Epoch [2068/3000], train_loss: 1.9364, valid_loss: 1.4014
Epoch [2069/3000], train_loss: 1.7709, valid_loss: 1.4595
Epoch [2070/3000], train_loss: 1.9186, valid_loss: 1.2427
Epoch [2071/3000], train_loss: 1.8210, valid_loss: 1.4680
Epoch [2072/3000], train_loss: 1.9383, valid_loss: 1.7257
Epoch [2073/3000], train_loss: 1.9638, valid_loss: 1.3048
Epoch [2074/3000], train_loss: 2.0758, valid_loss: 1.2318
Epoch [2075/3000], train_loss: 1.8664, valid_loss: 1.1969
Epoch [2076/3000], train_loss: 1.9684, valid_loss: 1.2686
Epoch [2077/3000], train_loss: 2.0005, valid_loss: 1.1679
Epoch [2078/3000], train_loss: 1.7461, valid_loss: 1.1544
Epoch [2079/3000], train_loss: 1.8825, valid_loss: 1.5191
Epoch [2080/3000], train_loss: 1.8616, valid_loss: 1.3707
Epoch [2081/3000], train_loss: 1.8981, valid_loss: 1.5178
Epoch [2082/3000], train_loss: 2.1906, valid_loss: 1.1256
Epoch [2083/3000], train_loss: 1.8223, valid_loss: 1.5647
Epoch [2084/3000], train_loss: 1.7345, valid_loss: 1.2107
Epoch [2085/3000], train_loss: 1.8068, valid_loss: 1.2344
Epoch [2086/3000], train_loss: 2.0653, valid_loss: 1.3492
Epoch [2087/3000], train_loss: 1.8971, valid_loss: 1.4577
Epoch [2088/3000], train_loss: 1.7743, valid_loss: 1.4472
Epoch [2089/3000], train_loss: 1.6752, valid_loss: 1.4915
Epoch [2090/3000], train_loss: 1.7083, valid_loss: 1.2914
Epoch [2091/3000], train_loss: 1.9870, valid_loss: 1.1298
Epoch [2092/3000], train_loss: 1.8817, valid_loss: 1.2089
Epoch [2093/3000], train_loss: 1.9844, valid_loss: 1.4434
Epoch [2094/3000], train_loss: 1.7748, valid_loss: 1.7880
Epoch [2095/3000], train_loss: 1.8315, valid_loss: 1.4425
Epoch [2096/3000], train_loss: 2.0066, valid_loss: 1.5482
Epoch [2097/3000], train_loss: 1.7265, valid_loss: 1.7446
Epoch [2098/3000], train_loss: 1.8160, valid_loss: 1.2001
Epoch [2099/3000], train_loss: 2.1414, valid_loss: 1.3313
Epoch [2100/3000], train_loss: 1.8090, valid_loss: 1.3692
Epoch [2101/3000], train_loss: 1.8415, valid_loss: 1.4120
Epoch [2102/3000], train_loss: 1.9154, valid_loss: 1.2943
Epoch [2103/3000], train_loss: 1.9349, valid_loss: 1.2905
Epoch [2104/3000], train_loss: 1.8952, valid_loss: 1.6612
Epoch [2105/3000], train_loss: 1.9599, valid_loss: 1.2802
Epoch [2106/3000], train_loss: 1.7853, valid_loss: 1.2017
Epoch [2107/3000], train_loss: 1.8855, valid_loss: 1.3507
Epoch [2108/3000], train_loss: 1.8086, valid_loss: 1.4687
Epoch [2109/3000], train_loss: 1.7252, valid_loss: 1.4082
Epoch [2110/3000], train_loss: 2.0983, valid_loss: 1.3997
Epoch [2111/3000], train_loss: 2.1237, valid_loss: 1.3053
Epoch [2112/3000], train_loss: 1.7476, valid_loss: 1.5008
Epoch [2113/3000], train_loss: 1.9016, valid_loss: 1.5035
Epoch [2114/3000], train_loss: 1.8444, valid_loss: 1.3361
Epoch [2115/3000], train_loss: 2.0281, valid_loss: 1.2630
Epoch [2116/3000], train_loss: 1.8525, valid_loss: 1.1986
Epoch [2117/3000], train_loss: 1.8802, valid_loss: 1.7197
Epoch [2118/3000], train_loss: 1.8788, valid_loss: 1.5541
Epoch [2119/3000], train_loss: 1.6505, valid_loss: 1.6015
Epoch [2120/3000], train_loss: 2.0576, valid_loss: 1.5577
Epoch [2121/3000], train_loss: 1.8717, valid_loss: 1.2509
Epoch [2122/3000], train_loss: 1.8791, valid_loss: 1.2020
Epoch [2123/3000], train_loss: 1.7746, valid_loss: 1.2381
Epoch [2124/3000], train_loss: 1.8026, valid_loss: 1.5934
Epoch [2125/3000], train_loss: 1.9969, valid_loss: 1.4024
Epoch [2126/3000], train_loss: 2.2898, valid_loss: 1.3397
Epoch [2127/3000], train_loss: 2.0159, valid_loss: 1.5555
Epoch [2128/3000], train_loss: 1.6750, valid_loss: 1.4926
Epoch [2129/3000], train_loss: 1.7175, valid_loss: 1.3147
Epoch [2130/3000], train_loss: 1.6674, valid_loss: 1.2688
Epoch [2131/3000], train_loss: 1.7051, valid_loss: 1.2360
Epoch [2132/3000], train_loss: 1.9632, valid_loss: 1.3008
Epoch [2133/3000], train_loss: 1.7202, valid_loss: 1.3256
Epoch [2134/3000], train_loss: 1.7013, valid_loss: 1.4343
Epoch [2135/3000], train_loss: 1.7548, valid_loss: 1.4456
Epoch [2136/3000], train_loss: 1.8061, valid_loss: 1.3137
Epoch [2137/3000], train_loss: 2.0546, valid_loss: 1.2122
Epoch [2138/3000], train_loss: 1.8997, valid_loss: 1.5444
Epoch [2139/3000], train_loss: 1.9613, valid_loss: 1.2158
Epoch [2140/3000], train_loss: 1.7924, valid_loss: 1.1381
Epoch [2141/3000], train_loss: 1.7552, valid_loss: 1.2243
Epoch [2142/3000], train_loss: 1.9425, valid_loss: 1.4160
Epoch [2143/3000], train_loss: 1.7287, valid_loss: 1.3494
Epoch [2144/3000], train_loss: 1.6518, valid_loss: 1.2242
Epoch [2145/3000], train_loss: 1.9673, valid_loss: 1.3797
Epoch [2146/3000], train_loss: 1.8603, valid_loss: 1.2327
Epoch [2147/3000], train_loss: 2.0767, valid_loss: 1.2396
Epoch [2148/3000], train_loss: 1.8207, valid_loss: 1.1042
Epoch [2149/3000], train_loss: 1.8356, valid_loss: 1.3608
Epoch [2150/3000], train_loss: 1.9269, valid_loss: 1.9923
Epoch [2151/3000], train_loss: 2.4215, valid_loss: 1.5192
Epoch [2152/3000], train_loss: 1.8110, valid_loss: 1.2581
Epoch [2153/3000], train_loss: 1.6554, valid_loss: 1.4000
Epoch [2154/3000], train_loss: 1.7224, valid_loss: 1.1688
Epoch [2155/3000], train_loss: 1.9967, valid_loss: 1.3401
Epoch [2156/3000], train_loss: 2.0797, valid_loss: 1.2796
Epoch [2157/3000], train_loss: 1.7803, valid_loss: 1.4500
Epoch [2158/3000], train_loss: 1.8656, valid_loss: 1.2641
Epoch [2159/3000], train_loss: 1.9278, valid_loss: 1.3077
Epoch [2160/3000], train_loss: 2.0798, valid_loss: 1.1195
Epoch [2161/3000], train_loss: 2.0229, valid_loss: 1.1738
Epoch [2162/3000], train_loss: 2.0422, valid_loss: 1.8900
Epoch [2163/3000], train_loss: 1.9735, valid_loss: 1.6541
Epoch [2164/3000], train_loss: 1.8499, valid_loss: 1.2831
Epoch [2165/3000], train_loss: 1.9488, valid_loss: 1.3661
Epoch [2166/3000], train_loss: 1.7466, valid_loss: 1.3129
Epoch [2167/3000], train_loss: 1.9939, valid_loss: 1.7047
Epoch [2168/3000], train_loss: 1.7818, valid_loss: 1.3470
Epoch [2169/3000], train_loss: 2.1759, valid_loss: 1.5979
Epoch [2170/3000], train_loss: 1.7600, valid_loss: 1.4419
Epoch [2171/3000], train_loss: 1.8417, valid_loss: 1.4530
Epoch [2172/3000], train_loss: 1.7126, valid_loss: 1.4007
Epoch [2173/3000], train_loss: 1.8930, valid_loss: 1.4552
Epoch [2174/3000], train_loss: 1.7259, valid_loss: 1.3566
Epoch [2175/3000], train_loss: 1.9269, valid_loss: 1.3175
Epoch [2176/3000], train_loss: 1.8484, valid_loss: 1.5273
Epoch [2177/3000], train_loss: 1.8886, valid_loss: 1.5833
Epoch [2178/3000], train_loss: 1.9642, valid_loss: 1.1749
Epoch [2179/3000], train_loss: 1.7442, valid_loss: 1.2134
Epoch [2180/3000], train_loss: 1.9157, valid_loss: 1.3653
Epoch [2181/3000], train_loss: 1.9217, valid_loss: 1.4006
Epoch [2182/3000], train_loss: 1.7882, valid_loss: 1.3781
Epoch [2183/3000], train_loss: 2.0101, valid_loss: 1.3779
Epoch [2184/3000], train_loss: 1.8987, valid_loss: 1.5363
Epoch [2185/3000], train_loss: 1.9275, valid_loss: 1.4655
Epoch [2186/3000], train_loss: 1.9244, valid_loss: 1.2492
Epoch [2187/3000], train_loss: 1.8005, valid_loss: 1.3956
Epoch [2188/3000], train_loss: 1.7112, valid_loss: 1.3344
Epoch [2189/3000], train_loss: 1.9048, valid_loss: 1.3489
Epoch [2190/3000], train_loss: 1.8018, valid_loss: 1.4307
Epoch [2191/3000], train_loss: 1.8670, valid_loss: 1.4317
Epoch [2192/3000], train_loss: 1.9958, valid_loss: 1.3544
Epoch [2193/3000], train_loss: 1.8810, valid_loss: 1.7085
Epoch [2194/3000], train_loss: 1.8925, valid_loss: 1.2021
Epoch [2195/3000], train_loss: 2.2034, valid_loss: 1.3283
Epoch [2196/3000], train_loss: 1.9074, valid_loss: 1.5526
Epoch [2197/3000], train_loss: 1.7493, valid_loss: 1.3935
Epoch [2198/3000], train_loss: 1.7686, valid_loss: 1.2728
Epoch [2199/3000], train_loss: 1.8935, valid_loss: 1.3747
Epoch [2200/3000], train_loss: 1.7805, valid_loss: 1.0848
Epoch [2201/3000], train_loss: 1.8537, valid_loss: 1.4155
Epoch [2202/3000], train_loss: 2.0450, valid_loss: 1.3500
Epoch [2203/3000], train_loss: 1.6635, valid_loss: 1.4939
Epoch [2204/3000], train_loss: 1.7367, valid_loss: 1.2940
Epoch [2205/3000], train_loss: 1.9377, valid_loss: 1.3868
Epoch [2206/3000], train_loss: 1.7823, valid_loss: 1.1468
Epoch [2207/3000], train_loss: 1.9548, valid_loss: 1.3421
Epoch [2208/3000], train_loss: 1.9540, valid_loss: 1.2126
Epoch [2209/3000], train_loss: 1.8333, valid_loss: 1.0242
Save model at epoch 2209 with loss 1.0242
Epoch [2210/3000], train_loss: 1.7867, valid_loss: 1.2553
Epoch [2211/3000], train_loss: 1.7609, valid_loss: 1.1829
Epoch [2212/3000], train_loss: 1.8219, valid_loss: 1.3219
Epoch [2213/3000], train_loss: 1.7769, valid_loss: 1.6359
Epoch [2214/3000], train_loss: 1.9692, valid_loss: 1.2906
Epoch [2215/3000], train_loss: 1.8139, valid_loss: 1.3775
Epoch [2216/3000], train_loss: 1.9406, valid_loss: 1.3691
Epoch [2217/3000], train_loss: 1.8907, valid_loss: 1.4572
Epoch [2218/3000], train_loss: 1.8557, valid_loss: 1.1803
Epoch [2219/3000], train_loss: 1.8835, valid_loss: 1.4783
Epoch [2220/3000], train_loss: 1.7512, valid_loss: 1.5220
Epoch [2221/3000], train_loss: 2.0143, valid_loss: 1.2898
Epoch [2222/3000], train_loss: 1.8486, valid_loss: 1.1483
Epoch [2223/3000], train_loss: 2.0259, valid_loss: 1.4531
Epoch [2224/3000], train_loss: 1.7794, valid_loss: 1.2335
Epoch [2225/3000], train_loss: 1.9224, valid_loss: 1.3724
Epoch [2226/3000], train_loss: 1.8335, valid_loss: 1.8591
Epoch [2227/3000], train_loss: 2.0229, valid_loss: 1.3310
Epoch [2228/3000], train_loss: 2.0876, valid_loss: 1.1513
Epoch [2229/3000], train_loss: 2.0696, valid_loss: 1.3076
Epoch [2230/3000], train_loss: 1.7481, valid_loss: 1.6028
Epoch [2231/3000], train_loss: 1.7200, valid_loss: 1.4621
Epoch [2232/3000], train_loss: 1.7749, valid_loss: 1.2985
Epoch [2233/3000], train_loss: 1.8440, valid_loss: 1.7927
Epoch [2234/3000], train_loss: 2.2374, valid_loss: 1.3145
Epoch [2235/3000], train_loss: 1.8536, valid_loss: 1.3472
Epoch [2236/3000], train_loss: 2.0341, valid_loss: 1.1638
Epoch [2237/3000], train_loss: 1.8827, valid_loss: 1.2085
Epoch [2238/3000], train_loss: 1.8585, valid_loss: 1.3483
Epoch [2239/3000], train_loss: 2.1129, valid_loss: 1.3296
Epoch [2240/3000], train_loss: 2.0837, valid_loss: 1.6516
Epoch [2241/3000], train_loss: 1.8335, valid_loss: 1.2824
Epoch [2242/3000], train_loss: 1.8780, valid_loss: 1.6899
Epoch [2243/3000], train_loss: 1.7495, valid_loss: 1.2371
Epoch [2244/3000], train_loss: 1.8774, valid_loss: 1.4143
Epoch [2245/3000], train_loss: 1.6860, valid_loss: 1.3969
Epoch [2246/3000], train_loss: 2.0180, valid_loss: 1.3279
Epoch [2247/3000], train_loss: 1.9559, valid_loss: 1.1626
Epoch [2248/3000], train_loss: 1.7790, valid_loss: 1.5877
Epoch [2249/3000], train_loss: 1.6948, valid_loss: 1.5342
Epoch [2250/3000], train_loss: 1.7628, valid_loss: 1.6965
Epoch [2251/3000], train_loss: 1.8099, valid_loss: 1.2704
Epoch [2252/3000], train_loss: 1.8123, valid_loss: 1.4377
Epoch [2253/3000], train_loss: 1.9014, valid_loss: 1.2673
Epoch [2254/3000], train_loss: 1.8969, valid_loss: 1.1630
Epoch [2255/3000], train_loss: 1.6937, valid_loss: 1.3277
Epoch [2256/3000], train_loss: 1.8073, valid_loss: 1.4045
Epoch [2257/3000], train_loss: 1.6960, valid_loss: 1.3533
Epoch [2258/3000], train_loss: 1.8113, valid_loss: 1.3521
Epoch [2259/3000], train_loss: 1.7134, valid_loss: 1.4859
Epoch [2260/3000], train_loss: 1.8139, valid_loss: 1.1711
Epoch [2261/3000], train_loss: 1.9083, valid_loss: 1.3923
Epoch [2262/3000], train_loss: 1.7773, valid_loss: 1.5429
Epoch [2263/3000], train_loss: 2.3490, valid_loss: 1.4203
Epoch [2264/3000], train_loss: 1.7895, valid_loss: 1.2801
Epoch [2265/3000], train_loss: 1.6570, valid_loss: 1.0917
Epoch [2266/3000], train_loss: 1.7375, valid_loss: 1.3735
Epoch [2267/3000], train_loss: 1.6366, valid_loss: 1.5426
Epoch [2268/3000], train_loss: 1.7036, valid_loss: 1.3315
Epoch [2269/3000], train_loss: 1.9947, valid_loss: 1.2062
Epoch [2270/3000], train_loss: 1.8510, valid_loss: 1.2144
Epoch [2271/3000], train_loss: 2.0230, valid_loss: 1.3789
Epoch [2272/3000], train_loss: 1.9072, valid_loss: 1.6482
Epoch [2273/3000], train_loss: 1.9432, valid_loss: 1.1786
Epoch [2274/3000], train_loss: 1.9581, valid_loss: 1.2712
Epoch [2275/3000], train_loss: 1.9269, valid_loss: 1.2870
Epoch [2276/3000], train_loss: 1.8942, valid_loss: 1.3656
Epoch [2277/3000], train_loss: 1.8240, valid_loss: 1.2971
Epoch [2278/3000], train_loss: 1.8508, valid_loss: 1.4323
Epoch [2279/3000], train_loss: 2.0152, valid_loss: 1.4802
Epoch [2280/3000], train_loss: 1.6989, valid_loss: 1.2216
Epoch [2281/3000], train_loss: 1.8452, valid_loss: 1.2745
Epoch [2282/3000], train_loss: 1.9316, valid_loss: 1.0802
Epoch [2283/3000], train_loss: 2.0652, valid_loss: 1.2518
Epoch [2284/3000], train_loss: 1.8966, valid_loss: 1.3463
Epoch [2285/3000], train_loss: 1.8301, valid_loss: 1.4760
Epoch [2286/3000], train_loss: 2.1031, valid_loss: 1.4933
Epoch [2287/3000], train_loss: 1.8356, valid_loss: 1.7064
Epoch [2288/3000], train_loss: 1.7747, valid_loss: 1.2997
Epoch [2289/3000], train_loss: 1.7802, valid_loss: 1.1896
Epoch [2290/3000], train_loss: 1.7580, valid_loss: 1.2890
Epoch [2291/3000], train_loss: 1.9475, valid_loss: 1.1958
Epoch [2292/3000], train_loss: 1.7683, valid_loss: 1.4460
Epoch [2293/3000], train_loss: 1.6955, valid_loss: 1.4958
Epoch [2294/3000], train_loss: 1.8246, valid_loss: 1.5935
Epoch [2295/3000], train_loss: 1.8835, valid_loss: 1.3388
Epoch [2296/3000], train_loss: 1.7508, valid_loss: 1.5081
Epoch [2297/3000], train_loss: 1.7488, valid_loss: 1.3992
Epoch [2298/3000], train_loss: 1.7951, valid_loss: 1.1055
Epoch [2299/3000], train_loss: 2.3505, valid_loss: 1.5226
Epoch [2300/3000], train_loss: 1.8119, valid_loss: 1.5424
Epoch [2301/3000], train_loss: 1.8102, valid_loss: 1.2966
Epoch [2302/3000], train_loss: 2.0534, valid_loss: 1.3100
Epoch [2303/3000], train_loss: 2.0812, valid_loss: 1.3594
Epoch [2304/3000], train_loss: 1.8666, valid_loss: 1.3711
Epoch [2305/3000], train_loss: 1.7926, valid_loss: 1.2829
Epoch [2306/3000], train_loss: 2.0216, valid_loss: 1.2920
Epoch [2307/3000], train_loss: 1.9902, valid_loss: 1.3282
Epoch [2308/3000], train_loss: 1.7538, valid_loss: 1.2280
Epoch [2309/3000], train_loss: 1.6714, valid_loss: 1.3829
Epoch [2310/3000], train_loss: 1.8605, valid_loss: 1.5633
Epoch [2311/3000], train_loss: 1.7894, valid_loss: 1.2959
Epoch [2312/3000], train_loss: 1.6996, valid_loss: 1.2458
Epoch [2313/3000], train_loss: 1.8118, valid_loss: 1.1489
Epoch [2314/3000], train_loss: 1.8605, valid_loss: 1.4750
Epoch [2315/3000], train_loss: 1.8457, valid_loss: 1.4255
Epoch [2316/3000], train_loss: 1.6657, valid_loss: 1.2726
Epoch [2317/3000], train_loss: 1.9124, valid_loss: 1.3153
Epoch [2318/3000], train_loss: 1.8309, valid_loss: 1.2190
Epoch [2319/3000], train_loss: 1.6440, valid_loss: 1.3491
Epoch [2320/3000], train_loss: 1.9211, valid_loss: 1.3716
Epoch [2321/3000], train_loss: 1.7223, valid_loss: 1.4017
Epoch [2322/3000], train_loss: 1.7532, valid_loss: 1.3464
Epoch [2323/3000], train_loss: 1.8399, valid_loss: 1.6110
Epoch [2324/3000], train_loss: 1.7735, valid_loss: 1.2635
Epoch [2325/3000], train_loss: 1.8069, valid_loss: 1.2534
Epoch [2326/3000], train_loss: 1.8919, valid_loss: 1.1513
Epoch [2327/3000], train_loss: 2.0042, valid_loss: 1.3492
Epoch [2328/3000], train_loss: 1.8455, valid_loss: 1.2267
Epoch [2329/3000], train_loss: 1.9391, valid_loss: 1.5577
Epoch [2330/3000], train_loss: 1.8513, valid_loss: 1.4140
Epoch [2331/3000], train_loss: 1.8134, valid_loss: 1.3961
Epoch [2332/3000], train_loss: 1.9771, valid_loss: 1.5202
Epoch [2333/3000], train_loss: 1.7873, valid_loss: 1.2867
Epoch [2334/3000], train_loss: 1.7919, valid_loss: 1.3914
Epoch [2335/3000], train_loss: 1.8622, valid_loss: 1.2012
Epoch [2336/3000], train_loss: 1.8032, valid_loss: 1.5836
Epoch [2337/3000], train_loss: 1.7964, valid_loss: 1.4356
Epoch [2338/3000], train_loss: 1.9194, valid_loss: 1.3519
Epoch [2339/3000], train_loss: 1.8316, valid_loss: 1.2111
Epoch [2340/3000], train_loss: 1.6344, valid_loss: 1.1870
Epoch [2341/3000], train_loss: 1.7634, valid_loss: 1.4240
Epoch [2342/3000], train_loss: 1.8435, valid_loss: 1.2050
Epoch [2343/3000], train_loss: 1.9470, valid_loss: 1.3254
Epoch [2344/3000], train_loss: 1.7098, valid_loss: 1.5922
Epoch [2345/3000], train_loss: 1.7561, valid_loss: 1.2652
Epoch [2346/3000], train_loss: 1.7459, valid_loss: 1.3398
Epoch [2347/3000], train_loss: 1.6904, valid_loss: 1.3139
Epoch [2348/3000], train_loss: 1.8037, valid_loss: 1.4573
Epoch [2349/3000], train_loss: 1.7827, valid_loss: 1.3152
Epoch [2350/3000], train_loss: 1.7269, valid_loss: 1.5219
Epoch [2351/3000], train_loss: 2.1163, valid_loss: 1.2112
Epoch [2352/3000], train_loss: 1.8188, valid_loss: 1.3038
Epoch [2353/3000], train_loss: 1.8324, valid_loss: 1.4742
Epoch [2354/3000], train_loss: 1.6364, valid_loss: 1.2459
Epoch [2355/3000], train_loss: 1.9328, valid_loss: 1.3762
Epoch [2356/3000], train_loss: 1.7114, valid_loss: 1.6000
Epoch [2357/3000], train_loss: 1.8066, valid_loss: 1.1167
Epoch [2358/3000], train_loss: 1.8782, valid_loss: 1.2435
Epoch [2359/3000], train_loss: 1.7433, valid_loss: 1.2924
Epoch [2360/3000], train_loss: 1.8109, valid_loss: 1.2647
Epoch [2361/3000], train_loss: 2.1257, valid_loss: 1.0502
Epoch [2362/3000], train_loss: 1.7898, valid_loss: 1.4150
Epoch [2363/3000], train_loss: 1.7074, valid_loss: 1.5014
Epoch [2364/3000], train_loss: 1.8058, valid_loss: 1.1769
Epoch [2365/3000], train_loss: 1.8203, valid_loss: 1.3616
Epoch [2366/3000], train_loss: 1.9099, valid_loss: 1.4860
Epoch [2367/3000], train_loss: 1.5802, valid_loss: 1.2796
Epoch [2368/3000], train_loss: 1.7934, valid_loss: 1.2237
Epoch [2369/3000], train_loss: 1.9199, valid_loss: 1.2041
Epoch [2370/3000], train_loss: 1.9407, valid_loss: 1.4562
Epoch [2371/3000], train_loss: 2.0075, valid_loss: 1.2219
Epoch [2372/3000], train_loss: 1.8343, valid_loss: 1.2040
Epoch [2373/3000], train_loss: 1.7573, valid_loss: 1.4378
Epoch [2374/3000], train_loss: 1.9064, valid_loss: 1.3499
Epoch [2375/3000], train_loss: 1.7309, valid_loss: 1.4547
Epoch [2376/3000], train_loss: 1.7879, valid_loss: 1.2603
Epoch [2377/3000], train_loss: 1.6486, valid_loss: 1.5290
Epoch [2378/3000], train_loss: 1.7504, valid_loss: 1.6786
Epoch [2379/3000], train_loss: 1.7262, valid_loss: 1.4209
Epoch [2380/3000], train_loss: 1.7318, valid_loss: 1.4724
Epoch [2381/3000], train_loss: 1.9347, valid_loss: 1.3595
Epoch [2382/3000], train_loss: 1.7271, valid_loss: 1.4281
Epoch [2383/3000], train_loss: 1.7380, valid_loss: 1.2146
Epoch [2384/3000], train_loss: 1.6726, valid_loss: 1.2415
Epoch [2385/3000], train_loss: 1.7060, valid_loss: 1.3607
Epoch [2386/3000], train_loss: 1.7487, valid_loss: 1.2109
Epoch [2387/3000], train_loss: 1.9215, valid_loss: 1.3473
Epoch [2388/3000], train_loss: 1.8376, valid_loss: 1.6084
Epoch [2389/3000], train_loss: 2.2659, valid_loss: 1.3551
Epoch [2390/3000], train_loss: 1.7533, valid_loss: 1.2331
Epoch [2391/3000], train_loss: 1.9010, valid_loss: 1.3357
Epoch [2392/3000], train_loss: 1.7048, valid_loss: 1.5709
Epoch [2393/3000], train_loss: 1.7011, valid_loss: 1.7420
Epoch [2394/3000], train_loss: 1.7825, valid_loss: 1.3856
Epoch [2395/3000], train_loss: 1.8479, valid_loss: 1.6228
Epoch [2396/3000], train_loss: 1.9515, valid_loss: 1.3606
Epoch [2397/3000], train_loss: 1.7675, valid_loss: 1.1860
Epoch [2398/3000], train_loss: 1.7498, valid_loss: 1.5964
Epoch [2399/3000], train_loss: 1.7024, valid_loss: 1.2857
Epoch [2400/3000], train_loss: 1.8024, valid_loss: 1.2158
Epoch [2401/3000], train_loss: 1.8225, valid_loss: 1.3035
Epoch [2402/3000], train_loss: 1.9051, valid_loss: 1.5026
Epoch [2403/3000], train_loss: 1.8678, valid_loss: 1.2537
Epoch [2404/3000], train_loss: 1.6787, valid_loss: 1.1868
Epoch [2405/3000], train_loss: 1.7373, valid_loss: 1.2164
Epoch [2406/3000], train_loss: 1.8238, valid_loss: 1.1399
Epoch [2407/3000], train_loss: 1.6951, valid_loss: 1.3847
Epoch [2408/3000], train_loss: 1.6790, valid_loss: 1.3177
Epoch [2409/3000], train_loss: 1.8358, valid_loss: 1.6933
Epoch [2410/3000], train_loss: 1.9079, valid_loss: 1.4874
Epoch [2411/3000], train_loss: 2.0393, valid_loss: 1.4965
Epoch [2412/3000], train_loss: 1.8288, valid_loss: 1.2365
Epoch [2413/3000], train_loss: 1.8828, valid_loss: 1.2360
Epoch [2414/3000], train_loss: 1.8014, valid_loss: 1.3934
Epoch [2415/3000], train_loss: 1.8987, valid_loss: 1.7039
Epoch [2416/3000], train_loss: 1.6282, valid_loss: 1.3163
Epoch [2417/3000], train_loss: 1.7662, valid_loss: 1.2571
Epoch [2418/3000], train_loss: 1.7795, valid_loss: 1.5004
Epoch [2419/3000], train_loss: 1.7396, valid_loss: 1.4612
Epoch [2420/3000], train_loss: 1.7753, valid_loss: 1.4999
Epoch [2421/3000], train_loss: 2.0916, valid_loss: 1.2670
Epoch [2422/3000], train_loss: 1.6408, valid_loss: 1.1635
Epoch [2423/3000], train_loss: 1.7210, valid_loss: 1.2751
Epoch [2424/3000], train_loss: 1.7798, valid_loss: 1.4526
Epoch [2425/3000], train_loss: 1.7742, valid_loss: 1.3222
Epoch [2426/3000], train_loss: 1.8964, valid_loss: 1.2688
Epoch [2427/3000], train_loss: 1.8683, valid_loss: 1.5250
Epoch [2428/3000], train_loss: 1.7694, valid_loss: 1.3909
Epoch [2429/3000], train_loss: 1.6350, valid_loss: 1.5691
Epoch [2430/3000], train_loss: 1.6681, valid_loss: 1.4342
Epoch [2431/3000], train_loss: 1.9631, valid_loss: 1.2685
Epoch [2432/3000], train_loss: 1.7862, valid_loss: 1.3880
Epoch [2433/3000], train_loss: 2.0585, valid_loss: 1.6293
Epoch [2434/3000], train_loss: 1.8245, valid_loss: 1.6672
Epoch [2435/3000], train_loss: 1.6394, valid_loss: 1.3707
Epoch [2436/3000], train_loss: 1.9155, valid_loss: 1.3458
Epoch [2437/3000], train_loss: 1.8922, valid_loss: 1.7484
Epoch [2438/3000], train_loss: 1.8134, valid_loss: 1.4285
Epoch [2439/3000], train_loss: 2.1067, valid_loss: 1.4070
Epoch [2440/3000], train_loss: 1.6954, valid_loss: 1.2210
Epoch [2441/3000], train_loss: 2.0651, valid_loss: 1.4610
Epoch [2442/3000], train_loss: 1.9646, valid_loss: 1.5392
Epoch [2443/3000], train_loss: 1.8108, valid_loss: 1.1190
Epoch [2444/3000], train_loss: 1.6985, valid_loss: 1.3327
Epoch [2445/3000], train_loss: 1.8985, valid_loss: 1.0778
Epoch [2446/3000], train_loss: 1.8138, valid_loss: 1.5780
Epoch [2447/3000], train_loss: 1.7873, valid_loss: 1.5866
Epoch [2448/3000], train_loss: 1.6993, valid_loss: 1.2072
Epoch [2449/3000], train_loss: 1.7081, valid_loss: 1.3085
Epoch [2450/3000], train_loss: 2.0577, valid_loss: 1.1317
Epoch [2451/3000], train_loss: 1.7291, valid_loss: 1.1148
Epoch [2452/3000], train_loss: 1.6966, valid_loss: 1.3157
Epoch [2453/3000], train_loss: 2.0507, valid_loss: 1.2868
Epoch [2454/3000], train_loss: 1.7188, valid_loss: 1.3092
Epoch [2455/3000], train_loss: 1.7434, valid_loss: 1.3689
Epoch [2456/3000], train_loss: 1.9157, valid_loss: 1.3770
Epoch [2457/3000], train_loss: 1.8279, valid_loss: 1.1986
Epoch [2458/3000], train_loss: 1.7222, valid_loss: 1.3449
Epoch [2459/3000], train_loss: 1.6656, valid_loss: 1.2992
Epoch [2460/3000], train_loss: 1.8065, valid_loss: 1.2792
Epoch [2461/3000], train_loss: 1.6892, valid_loss: 1.1872
Epoch [2462/3000], train_loss: 1.7800, valid_loss: 1.6769
Epoch [2463/3000], train_loss: 1.9640, valid_loss: 1.2182
Epoch [2464/3000], train_loss: 1.7152, valid_loss: 1.3545
Epoch [2465/3000], train_loss: 1.7972, valid_loss: 1.2884
Epoch [2466/3000], train_loss: 1.7679, valid_loss: 1.6232
Epoch [2467/3000], train_loss: 1.7399, valid_loss: 1.2273
Epoch [2468/3000], train_loss: 1.9510, valid_loss: 1.1408
Epoch [2469/3000], train_loss: 1.8849, valid_loss: 1.4509
Epoch [2470/3000], train_loss: 1.7422, valid_loss: 1.5289
Epoch [2471/3000], train_loss: 1.8288, valid_loss: 1.1401
Epoch [2472/3000], train_loss: 1.7129, valid_loss: 1.5142
Epoch [2473/3000], train_loss: 1.7418, valid_loss: 1.6690
Epoch [2474/3000], train_loss: 1.7281, valid_loss: 1.4781
Epoch [2475/3000], train_loss: 1.9245, valid_loss: 1.3766
Epoch [2476/3000], train_loss: 1.7917, valid_loss: 1.2161
Epoch [2477/3000], train_loss: 1.7375, valid_loss: 1.5346
Epoch [2478/3000], train_loss: 1.7506, valid_loss: 1.5133
Epoch [2479/3000], train_loss: 1.6234, valid_loss: 1.5520
Epoch [2480/3000], train_loss: 1.8565, valid_loss: 1.3404
Epoch [2481/3000], train_loss: 1.7433, valid_loss: 1.4618
Epoch [2482/3000], train_loss: 1.7711, valid_loss: 1.4457
Epoch [2483/3000], train_loss: 1.7585, valid_loss: 1.5870
Epoch [2484/3000], train_loss: 1.7417, valid_loss: 1.3580
Epoch [2485/3000], train_loss: 1.7693, valid_loss: 1.2789
Epoch [2486/3000], train_loss: 1.9641, valid_loss: 1.2824
Epoch [2487/3000], train_loss: 1.6303, valid_loss: 1.1990
Epoch [2488/3000], train_loss: 2.1653, valid_loss: 1.4875
Epoch [2489/3000], train_loss: 1.9464, valid_loss: 1.3699
Epoch [2490/3000], train_loss: 1.8097, valid_loss: 1.2235
Epoch [2491/3000], train_loss: 1.8906, valid_loss: 1.2714
Epoch [2492/3000], train_loss: 2.0696, valid_loss: 1.2759
Epoch [2493/3000], train_loss: 1.8969, valid_loss: 1.1962
Epoch [2494/3000], train_loss: 1.7669, valid_loss: 1.5681
Epoch [2495/3000], train_loss: 1.7932, valid_loss: 1.3221
Epoch [2496/3000], train_loss: 1.7448, valid_loss: 1.3821
Epoch [2497/3000], train_loss: 1.6358, valid_loss: 1.5641
Epoch [2498/3000], train_loss: 2.1117, valid_loss: 1.3583
Epoch [2499/3000], train_loss: 1.6356, valid_loss: 1.2044
Epoch [2500/3000], train_loss: 1.7457, valid_loss: 1.2849
Epoch [2501/3000], train_loss: 1.6989, valid_loss: 1.6605
Epoch [2502/3000], train_loss: 1.8128, valid_loss: 1.0766
Epoch [2503/3000], train_loss: 1.7491, valid_loss: 1.2845
Epoch [2504/3000], train_loss: 1.7888, valid_loss: 1.3815
Epoch [2505/3000], train_loss: 1.7405, valid_loss: 1.2100
Epoch [2506/3000], train_loss: 1.7256, valid_loss: 1.3259
Epoch [2507/3000], train_loss: 1.6868, valid_loss: 1.3802
Epoch [2508/3000], train_loss: 1.9391, valid_loss: 1.3770
Epoch [2509/3000], train_loss: 2.1193, valid_loss: 1.4523
Epoch [2510/3000], train_loss: 1.8640, valid_loss: 1.2998
Epoch [2511/3000], train_loss: 1.8652, valid_loss: 1.4003
Epoch [2512/3000], train_loss: 1.7522, valid_loss: 1.3196
Epoch [2513/3000], train_loss: 1.7452, valid_loss: 1.5260
Epoch [2514/3000], train_loss: 1.6726, valid_loss: 1.5490
Epoch [2515/3000], train_loss: 1.7512, valid_loss: 1.3455
Epoch [2516/3000], train_loss: 1.6816, valid_loss: 1.1955
Epoch [2517/3000], train_loss: 1.8485, valid_loss: 1.1649
Epoch [2518/3000], train_loss: 1.9184, valid_loss: 1.4998
Epoch [2519/3000], train_loss: 1.8305, valid_loss: 1.2279
Epoch [2520/3000], train_loss: 1.6219, valid_loss: 1.3543
Epoch [2521/3000], train_loss: 1.5113, valid_loss: 1.3865
Epoch [2522/3000], train_loss: 1.6903, valid_loss: 1.2130
Epoch [2523/3000], train_loss: 2.1549, valid_loss: 1.4486
Epoch [2524/3000], train_loss: 1.7819, valid_loss: 1.2324
Epoch [2525/3000], train_loss: 1.6198, valid_loss: 1.4187
Epoch [2526/3000], train_loss: 1.6235, valid_loss: 1.7404
Epoch [2527/3000], train_loss: 1.8327, valid_loss: 1.4267
Epoch [2528/3000], train_loss: 1.7250, valid_loss: 1.3393
Epoch [2529/3000], train_loss: 1.7513, valid_loss: 1.2437
Epoch [2530/3000], train_loss: 1.6861, valid_loss: 1.3271
Epoch [2531/3000], train_loss: 1.7828, valid_loss: 1.2902
Epoch [2532/3000], train_loss: 1.7892, valid_loss: 1.5994
Epoch [2533/3000], train_loss: 1.7493, valid_loss: 1.2328
Epoch [2534/3000], train_loss: 1.6247, valid_loss: 1.2577
Epoch [2535/3000], train_loss: 1.7590, valid_loss: 1.2068
Epoch [2536/3000], train_loss: 1.7568, valid_loss: 1.2379
Epoch [2537/3000], train_loss: 1.7440, valid_loss: 1.3597
Epoch [2538/3000], train_loss: 1.7614, valid_loss: 1.3786
Epoch [2539/3000], train_loss: 1.7662, valid_loss: 1.0688
Epoch [2540/3000], train_loss: 1.9291, valid_loss: 1.3501
Epoch [2541/3000], train_loss: 1.5531, valid_loss: 1.3430
Epoch [2542/3000], train_loss: 1.6807, valid_loss: 1.4185
Epoch [2543/3000], train_loss: 1.5353, valid_loss: 1.2334
Epoch [2544/3000], train_loss: 1.6454, valid_loss: 1.2347
Epoch [2545/3000], train_loss: 1.5786, valid_loss: 1.2792
Epoch [2546/3000], train_loss: 1.7074, valid_loss: 1.2886
Epoch [2547/3000], train_loss: 1.6765, valid_loss: 1.2606
Epoch [2548/3000], train_loss: 1.8090, valid_loss: 1.7580
Epoch [2549/3000], train_loss: 1.6400, valid_loss: 1.2445
Epoch [2550/3000], train_loss: 2.1283, valid_loss: 1.2803
Epoch [2551/3000], train_loss: 1.7650, valid_loss: 1.8032
Epoch [2552/3000], train_loss: 1.7442, valid_loss: 1.3090
Epoch [2553/3000], train_loss: 1.8588, valid_loss: 1.2707
Epoch [2554/3000], train_loss: 1.8463, valid_loss: 1.3875
Epoch [2555/3000], train_loss: 1.7839, valid_loss: 1.3216
Epoch [2556/3000], train_loss: 1.8953, valid_loss: 1.2569
Epoch [2557/3000], train_loss: 1.7008, valid_loss: 1.3354
Epoch [2558/3000], train_loss: 1.8047, valid_loss: 1.8818
Epoch [2559/3000], train_loss: 1.7539, valid_loss: 1.1072
Epoch [2560/3000], train_loss: 1.7786, valid_loss: 1.1670
Epoch [2561/3000], train_loss: 1.5792, valid_loss: 1.5404
Epoch [2562/3000], train_loss: 1.7598, valid_loss: 1.5049
Epoch [2563/3000], train_loss: 2.1322, valid_loss: 1.2235
Epoch [2564/3000], train_loss: 1.7697, valid_loss: 1.0550
Epoch [2565/3000], train_loss: 1.7175, valid_loss: 1.2493
Epoch [2566/3000], train_loss: 1.7809, valid_loss: 1.5587
Epoch [2567/3000], train_loss: 1.7690, valid_loss: 1.2903
Epoch [2568/3000], train_loss: 1.7523, valid_loss: 1.3071
Epoch [2569/3000], train_loss: 1.8368, valid_loss: 1.2176
Epoch [2570/3000], train_loss: 1.6268, valid_loss: 1.2773
Epoch [2571/3000], train_loss: 1.7771, valid_loss: 1.3597
Epoch [2572/3000], train_loss: 1.6335, valid_loss: 1.5301
Epoch [2573/3000], train_loss: 1.8163, valid_loss: 1.2322
Epoch [2574/3000], train_loss: 1.9687, valid_loss: 1.1134
Epoch [2575/3000], train_loss: 1.7030, valid_loss: 1.1867
Epoch [2576/3000], train_loss: 1.7362, valid_loss: 1.3901
Epoch [2577/3000], train_loss: 1.7563, valid_loss: 1.3352
Epoch [2578/3000], train_loss: 1.6757, valid_loss: 1.5400
Epoch [2579/3000], train_loss: 1.7239, valid_loss: 1.1835
Epoch [2580/3000], train_loss: 1.7153, valid_loss: 1.1788
Epoch [2581/3000], train_loss: 1.8399, valid_loss: 1.4014
Epoch [2582/3000], train_loss: 1.7523, valid_loss: 1.3148
Epoch [2583/3000], train_loss: 1.7595, valid_loss: 1.3309
Epoch [2584/3000], train_loss: 1.7648, valid_loss: 1.3125
Epoch [2585/3000], train_loss: 1.7603, valid_loss: 1.6898
Epoch [2586/3000], train_loss: 1.8481, valid_loss: 1.4353
Epoch [2587/3000], train_loss: 1.5126, valid_loss: 1.3096
Epoch [2588/3000], train_loss: 1.8942, valid_loss: 1.1570
Epoch [2589/3000], train_loss: 1.8562, valid_loss: 1.6272
Epoch [2590/3000], train_loss: 1.6067, valid_loss: 1.2389
Epoch [2591/3000], train_loss: 1.5737, valid_loss: 1.2763
Epoch [2592/3000], train_loss: 1.8379, valid_loss: 1.4032
Epoch [2593/3000], train_loss: 1.8061, valid_loss: 1.7126
Epoch [2594/3000], train_loss: 2.0936, valid_loss: 1.4975
Epoch [2595/3000], train_loss: 1.9034, valid_loss: 1.1147
Epoch [2596/3000], train_loss: 1.6842, valid_loss: 1.6645
Epoch [2597/3000], train_loss: 1.9438, valid_loss: 1.4555
Epoch [2598/3000], train_loss: 2.1666, valid_loss: 1.2281
Epoch [2599/3000], train_loss: 1.6534, valid_loss: 1.0906
Epoch [2600/3000], train_loss: 1.7009, valid_loss: 1.3672
Epoch [2601/3000], train_loss: 1.9628, valid_loss: 1.6477
Epoch [2602/3000], train_loss: 1.7040, valid_loss: 1.4050
Epoch [2603/3000], train_loss: 1.8306, valid_loss: 1.5250
Epoch [2604/3000], train_loss: 1.7187, valid_loss: 1.3855
Epoch [2605/3000], train_loss: 1.7851, valid_loss: 1.5252
Epoch [2606/3000], train_loss: 1.4791, valid_loss: 1.1864
Epoch [2607/3000], train_loss: 1.5487, valid_loss: 1.1772
Epoch [2608/3000], train_loss: 1.7730, valid_loss: 1.5462
Epoch [2609/3000], train_loss: 1.6605, valid_loss: 1.4423
Epoch [2610/3000], train_loss: 1.7499, valid_loss: 1.6010
Early stop at epoch 2610
代码
文本

5. 测试

代码
文本
[12]
def save_pred(preds, file):
with open(file, "w", newline="") as f:
writer = csv.writer(f)
writer.writerow(["id", "tested_positive"])
for i, p in enumerate(preds):
writer.writerow([i, p])
model = MyModel(input_dim=x_train.shape[1]).to(device)
model.load_state_dict(torch.load(os.path.join(config["model_dir"], "best_model.pth")))
preds = predict(test_loader, model, device)
save_pred(preds, "pred.csv")
/tmp/ipykernel_97/2294147625.py:9: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature.
  model.load_state_dict(torch.load(os.path.join(config["model_dir"], "best_model.pth")))
代码
文本
Machine Learning
Machine Learning
点个赞吧
{/**/}