

基于Transformer网络预测锂电池的老化轨迹
©️ Copyright 2023 @ Authors
作者:
陈乐天📨
日期:2024-05-21
共享协议:本作品采用知识共享署名-非商业性使用-相同方式共享 4.0 国际许可协议进行许可。
快速开始:点击上方的 开始连接 按钮,选择 bohrium-notebook:2023-04-07镜像及 c16_m16_cpu 节点配置,稍等片刻即可运行。
本文数据与代码均来自文献,文献信息详见文末。
主要内容
准确预测锂电池的剩余寿命(RUL)在管理电池健康状态和估计电池状态方面发挥着重要作用。随着电动汽车的快速发展,对预测RUL技术的需求与日俱增。为了预测RUL,本案例中设计了一个基于Transformer的神经网络。
- 首先,电池容量数据通常存在大量噪声,特别是在电池充放电再生过程中。为了缓解这个问题,我们对原始数据进行了去噪自动编码器(DAE)的处理。
- 然后,为了捕获时序信息和学习有用的特征,重构后的序列被输入到Transformer网络中。
- 最后,为了统一去噪和预测两个任务,本案例将其组合到一个统一的框架中。
在NASA数据集上的大量实验和与一些现有方法的比较结果表明,本案例中提出的方法在预测RUL方面具有更好的表现。
Transformer是一种神经网络架构,主要用于自然语言处理(NLP)任务,如机器翻译、文本摘要等。它是由Vaswani等人在2017年提出的一种基于自注意力(Self-Attention)机制的深度学习模型。Transformer摒弃了传统的循环神经网络(RNN)和长短时记忆网络(LSTM),利用自注意力机制处理输入序列中的长距离依赖关系。这使得Transformer在处理序列数据时具有更高的并行性和计算效率。此外,Transformer引入了位置编码(Positional Encoding)来捕捉序列中单词的顺序信息。
导入需要的库
- 显示当前机器的线程数
Number of threads before setting: 8
- 调整线程数,提高CPU利用率
1. 查看并加载数据
1.1 NASA数据集介绍
NASA 数据集可从 NASA Ames研究中心网站 获取,其中包含四种不同锂离子电池的记录,每个锂离子电池数据都包含三种:充电、放电和阻抗测量。
一组四个锂离子电池(#5、6、7和18)在室温下经历了3种不同的操作模式(充电、放电和阻抗)。
- 充电 是在恒定电流(CC)模式下以 1.5A 进行,直到电池电压达到 4.2V,然后在恒定电压(CV)模式下继续进行,直到充电电流降至 20mA。
- 放电 是在恒定电流(CC)模式下以 2A 进行,直到电池电压降至2.7V、2.5V、2.2V 和 2.5V(对应电池5、6、7和18)。
- 阻抗测量 是通过电化学阻抗谱(EIS)频率扫描从 0.1Hz 到 5kHz 进行的。反复的充放电循环会加速电池的老化,而阻抗测量提供了电池内部参数随老化进展的变化信息。当电池达到寿命终点(EOL)标准时,实验停止,该标准是额定容量(从 2Ahr 到 1.4Ahr)下降30%。该数据集可用于预测剩余电量(对于给定的放电循环)和剩余使用寿命(RUL)。
数据集的文件中包括三十多个电池的数据,本教程取1. BatteryAgingARC-FY08Q4/
中的数据进行展示,该文件夹包含如下数据
B0005.mat: 电池#5的数据
B0006.mat: 电池#6的数据
B0007.mat: 电池#7的数据
B0018.mat: 电池#18的数据
1.2 提取原始数据
Load Dataset B0005.mat ... Load Dataset B0006.mat ... Load Dataset B0007.mat ... Load Dataset B0018.mat ...
1.3 绘制容量衰减曲线图
展示一下原始数据中容量衰减的曲线。
<matplotlib.legend.Legend at 0x7f6a27a02e80>
2. 数据分割与处理
2.1 数据构建函数
- 数据构建函数: 用于将时间序列数据构建成模型训练所需的特征和目标对。
2.2 数据分割函数
- 数据分割函数: 用于将时间序列数据分割为训练集和测试集。
2.3 数据处理和评估函数
- 数据处理和评估函数: 用于留一评估、计算相对误差和评估指标。
留一训练
在 get_train_test
函数中:
data_sequence = data_dict[name]['capacity'][1]
获取当前电池(name)的容量数据。train_data, test_data = data_sequence[:window_size+1], data_sequence[window_size+1:]
将当前电池数据按窗口大小分割,前window_size+1
个数据用于训练,剩余数据用于测试。for k, v in data_dict.items()
: 循环其他电池的数据,将其全部用于训练。 这意味着,每次调用get_train_test
时,都会将name
指定的电池数据作为测试集,其他所有电池的数据作为训练集。
具体来说:
Battery_list 包含 ['B0005', 'B0006', 'B0007', 'B0018'] 四个电池,那么留一评估会进行四次,每次使用不同的电池作为测试集,具体如下:
- 第一次:使用 'B0005' 作为测试集,'B0006', 'B0007', 'B0018' 作为训练集。
- 第二次:使用 'B0006' 作为测试集,'B0005', 'B0007', 'B0018' 作为训练集。
- 第三次:使用 'B0007' 作为测试集,'B0005', 'B0006', 'B0018' 作为训练集。
- 第四次:使用 'B0018' 作为测试集,'B0005', 'B0006', 'B0007' 作为训练集。
2.4 辅助函数
- 辅助函数: 用于设置随机种子,确保结果的可重复性。
3. GRU模型的搭建与性能
3.1 构建GRU模型
3.2 定义训练函数
3.3 训练模型并评估性能
B0005 - RMSE: 0.0191, MAE: 0.0133
B0006 - RMSE: 0.0221, MAE: 0.0126
B0007 - RMSE: 0.0243, MAE: 0.0207
B0018 - RMSE: 0.0264, MAE: 0.0141
4. Transformer架构与性能
4.1 构建Transformer网络模型
4.2 定义训练函数
在处理时间序列预测问题时,特别是在使用如Transformer这样的模型时,fixed prediction和moving prediction这两种策略经常被提及。这两种方法处理输入数据的方式不同,针对的应用场景也有所不同。以下是这两种策略的详细解释:
- Fixed Prediction (固定预测)
在"fixed prediction"策略中,模型使用固定长度的历史数据来预测未来的一点或多点数据。这种方法通常在模型训练时定义一个固定的窗口,该窗口包含了一段时间序列的数据,窗口的大小在训练过程中不会改变。每次预测都是基于相同长度的历史数据进行的。
例如,如果设置的窗口长度为30天,无论预测哪一天的数据,都会使用前30天的数据作为输入。预测完成后,窗口不会向前滑动,而是固定选取接下来需要预测的时间点的前30天数据进行预测。
这种策略适用于那些历史数据长度固定且历史信息足以预测未来数据点的场景。
- Moving Prediction (滑动预测)
"Moving prediction"策略使用一种动态的窗口来预测时间序列中的数据点。在这种方法中,窗口会随着时间的推移而移动。每完成一次预测,窗口就会向前滑动一个或多个时间单位,使得每次预测都包括最新的数据。
例如,如果窗口长度同样设为30天,模型首先使用第1天到第30天的数据预测第31天。在下一步预测第32天时,窗口向前滑动,此时使用第2天到第31天的数据作为输入。
这种策略使模型能够不断地利用最新的数据进行预测,非常适合于那些数据快速变化或者模型需要频繁更新以适应最新数据趋势的场景。
简言之:
- 在实施固定预测时,可以将历史数据固定长度的时间序列直接输入到模型中。
- 对于滑动预测,则需要每次预测后更新输入数据窗口,包括最近的观测值。
选择哪种预测策略取决于具体的需求和数据特性。固定预测可能更简单、计算成本较低,而滑动预测则能更灵活地适应数据的变化,可能更适合于环境变化较快的应用场景。
4.3 训练并查看模型性能
设置训练的参数并查看模型在训练中的性能
seed:0 [[[0.02581599 0.01961029]] [[0.11350003 0.10178691]] [[0.09362362 0.08794732]] [[0.03510362 0.02962641]]] rmsefor this seed: 0.0634 ------------------------------------------------------------------ seed:1 [[[0.02323237 0.01700326]] [[0.11040415 0.09982523]] [[0.09569618 0.09030358]] [[0.03432236 0.02757088]]] rmsefor this seed: 0.0623 ------------------------------------------------------------------ seed:2 [[[0.02547026 0.01917356]] [[0.11211098 0.10056742]] [[0.08777632 0.08186543]] [[0.03331153 0.02759026]]] rmsefor this seed: 0.0610 ------------------------------------------------------------------ seed:3 [[[0.02827207 0.01933416]] [[0.11172008 0.09856118]] [[0.08325723 0.07706927]] [[0.03393557 0.0278173 ]]] rmsefor this seed: 0.0600 ------------------------------------------------------------------ seed:4
[[[0.02583933 0.01974082]] [[0.11073539 0.09894526]] [[0.0933731 0.08755475]] [[0.03368701 0.02845385]]] rmsefor this seed: 0.0623 ------------------------------------------------------------------ rmse mean: 0.0618
代码解读
- 初始化参数:设置模型训练的超参数,如学习率、隐藏层维度、层数、训练轮数等。
- 多次实验:通过改变随机种子(seed)进行多次训练和评估,以评估模型的稳健性。
- 调用 train 函数:使用不同的随机种子进行训练和评估,并获取评估结果。
- 收集和打印评估结果:将每次评估的结果收集起来,并计算和打印每个种子和所有种子的平均评估结果。
4.4 模型预测
对测试数据进行预测并显示模型对未知数据的预测能力
seed:0 [[[0.02581599 0.01961029]] [[0.11350003 0.10178691]] [[0.09362362 0.08794732]] [[0.03510362 0.02962641]]] rmsefor this seed: 0.0634
代码解读
- 初始化参数:设置与前一部分相同的超参数。
- 设置特定种子:使用固定的随机种子 seed = 0 进行模型训练和评估。
- 调用 train 函数:使用固定的随机种子进行训练和评估,并获取评估结果。
- 打印评估结果:打印固定随机种子下的评估结果。
- 绘制RUL图
4.5 超参数搜索(选学)
下面我们将使用超参数搜索,找到一组最佳的超参数来优化模型的性能。具体来说,代码通过不同的超参数组合来训练模型,并记录每次训练的性能得分,最终选择得分最优的超参数组合。
(参数筛选的过程将会比较费时,请酌情考虑运行)
K=16, lr=0.001, num_layers=1, hidden_dim=16, alpha=0.0 seed:0 [[[0.05579332 0.04315475]] [[0.05537865 0.04317957]] [[0.07546735 0.06422637]] [[0.05290992 0.04336866]]] rmse: 0.0542 ------------------------------------------------------------------ seed:1 [[[0.06108889 0.04962513]] [[0.14630799 0.12177661]] [[0.07382508 0.06543761]] [[0.05291493 0.0433477 ]]] rmse: 0.0768 ------------------------------------------------------------------ seed:2 [[[0.03834202 0.02976019]] [[0.11673085 0.09145127]] [[0.07471715 0.06662953]] [[0.05680966 0.04726888]]] rmse: 0.0652 ------------------------------------------------------------------ rmse mean: 0.0654 =================================================================== K=16, lr=0.001, num_layers=1, hidden_dim=16, alpha=0.0001 seed:0 [[[0.05574509 0.04311358]] [[0.05537706 0.04318089]] [[0.07545332 0.06421305]] [[0.05289318 0.0434147 ]]] rmse: 0.0542 ------------------------------------------------------------------ seed:1 [[[0.06086272 0.04942671]] [[0.14630212 0.12177026]] [[0.07393592 0.06554996]] [[0.05290475 0.04334061]]] rmse: 0.0768 ------------------------------------------------------------------ seed:2 [[[0.03830367 0.02980537]] [[0.11666724 0.09140835]] [[0.07469732 0.06660853]] [[0.0568037 0.04726652]]] rmse: 0.0652 ------------------------------------------------------------------ rmse mean: 0.0654 =================================================================== K=16, lr=0.001, num_layers=1, hidden_dim=16, alpha=0.001 seed:0 [[[0.05529232 0.04273052]] [[0.05535384 0.04317414]] [[0.09775404 0.0923337 ]] [[0.0486982 0.03950913]]] rmse: 0.0594 ------------------------------------------------------------------ seed:1 [[[0.05887469 0.04767337]] [[0.08935789 0.07665426]] [[0.11695443 0.10975647]] [[0.04486671 0.0340712 ]]] rmse: 0.0723 ------------------------------------------------------------------ seed:2 [[[0.03845274 0.02990091]] [[0.11607002 0.09101668]] [[0.07438442 0.06626677]] [[0.0493777 0.04054882]]] rmse: 0.0633 ------------------------------------------------------------------ rmse mean: 0.0650 =================================================================== K=16, lr=0.001, num_layers=1, hidden_dim=16, alpha=0.01 seed:0 [[[0.05243552 0.04029038]] [[0.13129685 0.12207231]] [[0.08075634 0.07377641]] [[0.04194189 0.03464847]]] rmse: 0.0722 ------------------------------------------------------------------ seed:1 [[[0.04639063 0.03666479]] [[0.09595033 0.08775964]] [[0.10594106 0.10167632]] [[0.04167628 0.03287641]]] rmse: 0.0686 ------------------------------------------------------------------ seed:2 [[[0.03973843 0.03132249]] [[0.11183965 0.08828685]] [[0.07570422 0.06684503]] [[0.04013189 0.03212339]]] rmse: 0.0607 ------------------------------------------------------------------ rmse mean: 0.0672 =================================================================== K=16, lr=0.001, num_layers=1, hidden_dim=32, alpha=0.0 seed:0 [[[0.04570398 0.03386932]] [[0.12039536 0.09798004]] [[0.10341691 0.09502885]] [[0.04746935 0.03816094]]] rmse: 0.0728 ------------------------------------------------------------------ seed:1 [[[0.06050094 0.05062599]] [[0.0972739 0.08322365]] [[0.10408007 0.09364621]] [[0.04814552 0.03988793]]] rmse: 0.0722 ------------------------------------------------------------------ seed:2 [[[0.04146468 0.0314298 ]] [[0.123384 0.10860474]] [[0.11228388 0.10771195]] [[0.04837707 0.03925201]]] rmse: 0.0766 ------------------------------------------------------------------ rmse mean: 0.0738 =================================================================== K=16, lr=0.001, num_layers=1, hidden_dim=32, alpha=0.0001 seed:0 [[[0.06054141 0.05068043]] [[0.11534359 0.10038401]] [[0.11345214 0.10886452]] [[0.04597465 0.03469426]]] rmse: 0.0787 ------------------------------------------------------------------ seed:2 [[[0.04140137 0.03138902]] [[0.12360062 0.10883281]] [[0.11341541 0.10700375]] [[0.04678257 0.03692625]]] rmse: 0.0762 ------------------------------------------------------------------ rmse mean: 0.0769 =================================================================== K=16, lr=0.001, num_layers=1, hidden_dim=32, alpha=0.01 seed:0 [[[0.03511723 0.02673222]] [[0.1274418 0.10370036]] [[0.08737518 0.07994064]] [[0.04188141 0.03540233]]] rmse: 0.0672 ------------------------------------------------------------------ seed:1 [[[0.05844361 0.04880038]] [[0.10531176 0.09531503]] [[0.10926066 0.10394125]] [[0.0417639 0.03410057]]] rmse: 0.0746 ------------------------------------------------------------------ seed:2 [[[0.03529982 0.02860416]] [[0.11015119 0.09272921]] [[0.10865732 0.1047193 ]] [[0.04211071 0.03545042]]] rmse: 0.0697 ------------------------------------------------------------------ rmse mean: 0.0705 =================================================================== K=16, lr=0.001, num_layers=1, hidden_dim=64, alpha=0.0 seed:0 [[[0.04534212 0.03386404]] [[0.10791959 0.08572897]] [[0.07808951 0.06958386]] [[0.04171728 0.03176094]]] rmse: 0.0618 ------------------------------------------------------------------ seed:1 [[[0.04565693 0.03657514]] [[0.11563183 0.09775207]] [[0.08858664 0.0843206 ]] [[0.04798819 0.03947968]]] rmse: 0.0695 ------------------------------------------------------------------ seed:2 [[[0.04102911 0.03282395]] [[0.11723924 0.09648926]] [[0.07672825 0.06597762]] [[0.05263588 0.04189266]]] rmse: 0.0656 ------------------------------------------------------------------ rmse mean: 0.0656 =================================================================== K=16, lr=0.001, num_layers=1, hidden_dim=64, alpha=0.0001 seed:0 [[[0.04533991 0.0338627 ]] [[0.10783408 0.08559674]] [[0.07806664 0.06955769]] [[0.04171351 0.03175744]]] rmse: 0.0617 ------------------------------------------------------------------ seed:1 [[[0.04564766 0.03656737]] [[0.11562354 0.09774777]] [[0.08856247 0.08429537]] [[0.04797971 0.03944457]]] rmse: 0.0695 ------------------------------------------------------------------ seed:2 [[[0.04101948 0.03282229]] [[0.11722409 0.09648552]] [[0.07673157 0.06598853]] [[0.05262419 0.04188973]]] rmse: 0.0656 ------------------------------------------------------------------ rmse mean: 0.0656 =================================================================== K=16, lr=0.001, num_layers=1, hidden_dim=64, alpha=0.001 seed:0 [[[0.04532497 0.03386072]] [[0.1097264 0.0870697 ]] [[0.07800225 0.06948435]] [[0.04169096 0.0317376 ]]] rmse: 0.0621 ------------------------------------------------------------------ seed:1 [[[0.04554575 0.03646945]] [[0.115531 0.0976982 ]] [[0.08832138 0.08403683]] [[0.04642754 0.03794871]]] rmse: 0.0690 ------------------------------------------------------------------ seed:2 [[[0.04095001 0.03271809]] [[0.11981773 0.09929855]] [[0.10264766 0.09566698]] [[0.03916255 0.03098665]]] rmse: 0.0702 ------------------------------------------------------------------ rmse mean: 0.0671 =================================================================== K=16, lr=0.001, num_layers=1, hidden_dim=64, alpha=0.01 seed:0 [[[0.04500372 0.03364014]] [[0.08893182 0.07582743]] [[0.11320525 0.10759558]] [[0.05430474 0.04017501]]] rmse: 0.0698 ------------------------------------------------------------------ seed:1 [[[0.04466283 0.03534823]] [[0.09493656 0.08530461]] [[0.10234367 0.09556175]] [[0.03685407 0.03011271]]] rmse: 0.0656 ------------------------------------------------------------------ seed:2 [[[0.03931845 0.03217196]] [[0.12173005 0.09852856]] [[0.12051482 0.1163262 ]] [[0.04263701 0.03504451]]] rmse: 0.0758 ------------------------------------------------------------------ rmse mean: 0.0704 =================================================================== K=16, lr=0.001, num_layers=1, hidden_dim=128, alpha=0.0 seed:0 [[[0.05212979 0.04201493]] [[0.09530859 0.08056868]] [[0.07597009 0.0661597 ]] [[0.04236682 0.03371838]]] rmse: 0.0610 ------------------------------------------------------------------ seed:1 [[[0.04451324 0.03411513]] [[0.11550815 0.09959015]] [[0.09776229 0.09046725]] [[0.0444946 0.03639191]]] rmse: 0.0704 ------------------------------------------------------------------ seed:2 [[[0.04719653 0.03759071]] [[0.11632335 0.09532064]] [[0.11798803 0.11156472]] [[0.03966085 0.0308577 ]]] rmse: 0.0746 ------------------------------------------------------------------ rmse mean: 0.0686 =================================================================== K=16, lr=0.001, num_layers=1, hidden_dim=128, alpha=0.0001 seed:0 [[[0.05212189 0.0420022 ]] [[0.09531499 0.08057523]] [[0.07595878 0.06614809]] [[0.04236246 0.03371331]]] rmse: 0.0610 ------------------------------------------------------------------ seed:1 [[[0.04451287 0.03412137]] [[0.11546416 0.09955514]] [[0.09772985 0.09043223]] [[0.04450534 0.03640591]]] rmse: 0.0703 ------------------------------------------------------------------ seed:2 [[[0.04678944 0.03725688]] [[0.11632198 0.09532239]] [[0.1179869 0.11156077]] [[0.0396561 0.03085956]]] rmse: 0.0745 ------------------------------------------------------------------ rmse mean: 0.0686 =================================================================== K=16, lr=0.001, num_layers=1, hidden_dim=128, alpha=0.001 seed:0 [[[0.05200423 0.04184149]] [[0.09543564 0.08069439]] [[0.07589671 0.06607275]] [[0.04233232 0.03367831]]] rmse: 0.0610 ------------------------------------------------------------------ seed:1 [[[0.0444775 0.03413049]] [[0.11522758 0.09936584]] [[0.09747154 0.09017688]] [[0.04433844 0.03626341]]] rmse: 0.0702 ------------------------------------------------------------------ seed:2 [[[0.04467206 0.03574815]] [[0.11637435 0.09539056]] [[0.11986627 0.11499337]] [[0.04292482 0.03552765]]] rmse: 0.0757 ------------------------------------------------------------------ rmse mean: 0.0690 =================================================================== K=16, lr=0.001, num_layers=1, hidden_dim=128, alpha=0.01 seed:0 [[[0.05065351 0.04122391]] [[0.11885741 0.09724139]] [[0.09917449 0.09217287]] [[0.04011896 0.03379625]]] rmse: 0.0717 ------------------------------------------------------------------ seed:1 [[[0.04464794 0.03435011]] [[0.11847323 0.1031361 ]] [[0.10504644 0.09926197]] [[0.04610906 0.03699228]]] rmse: 0.0735 ------------------------------------------------------------------ seed:2 [[[0.03909549 0.03051162]] [[0.12815029 0.11080443]] [[0.10116868 0.09206224]] [[0.04665912 0.03719984]]] rmse: 0.0732 ------------------------------------------------------------------ rmse mean: 0.0728 =================================================================== K=16, lr=0.001, num_layers=1, hidden_dim=256, alpha=0.0 seed:0 [[[0.05391202 0.04345764]] [[0.10498295 0.09132787]] [[0.10684148 0.10087558]] [[0.04801265 0.03696902]]] rmse: 0.0733 ------------------------------------------------------------------ seed:1 [[[0.04192736 0.03322934]] [[0.11879614 0.09513601]] [[0.11830103 0.11304637]] [[0.04462205 0.03680698]]] rmse: 0.0752 ------------------------------------------------------------------ seed:2 [[[0.04856485 0.03899068]] [[0.10630403 0.08547351]] [[0.11887025 0.1133377 ]] [[0.04267112 0.03538458]]] rmse: 0.0737 ------------------------------------------------------------------ rmse mean: 0.0741 =================================================================== K=16, lr=0.001, num_layers=1, hidden_dim=256, alpha=0.0001 seed:0 [[[0.05377548 0.04332595]] [[0.10499666 0.09134202]] [[0.10582882 0.10021984]] [[0.04800543 0.03696646]]] rmse: 0.0731 ------------------------------------------------------------------ seed:1 [[[0.04192207 0.03321832]] [[0.11878484 0.09513316]] [[0.11821773 0.11295857]] [[0.04461848 0.03680627]]] rmse: 0.0752 ------------------------------------------------------------------ seed:2 [[[0.04855426 0.03898024]] [[0.10519716 0.08448152]] [[0.10841588 0.10575112]] [[0.04518044 0.0353064 ]]] rmse: 0.0715 ------------------------------------------------------------------ rmse mean: 0.0732 =================================================================== K=16, lr=0.001, num_layers=1, hidden_dim=256, alpha=0.001 seed:0 [[[0.05258222 0.04219308]] [[0.10505006 0.09141212]] [[0.10513123 0.09995746]] [[0.04798879 0.03695702]]] rmse: 0.0727 ------------------------------------------------------------------ seed:1 [[[0.04188319 0.03313094]] [[0.11867309 0.09508975]] [[0.11816546 0.11264889]] [[0.04454601 0.03677245]]] rmse: 0.0751 ------------------------------------------------------------------ seed:2 [[[0.04841836 0.03884982]] [[0.10619751 0.086536 ]] [[0.1192516 0.11037633]] [[0.04009299 0.03203733]]] rmse: 0.0727 ------------------------------------------------------------------ rmse mean: 0.0735 =================================================================== K=16, lr=0.001, num_layers=1, hidden_dim=256, alpha=0.01 seed:0 [[[0.03763078 0.02837536]] [[0.106052 0.0926899 ]] [[0.10215394 0.09876973]] [[0.04144 0.03479739]]] rmse: 0.0677 ------------------------------------------------------------------ seed:1 [[[0.03977969 0.0309912 ]] [[0.11833074 0.09524053]] [[0.11739133 0.11261137]] [[0.04970058 0.03963456]]] rmse: 0.0755 ------------------------------------------------------------------ seed:2 [[[0.03421232 0.02682436]] [[0.12004388 0.10439169]] [[0.0889178 0.07972656]] [[0.03862722 0.03122593]]] rmse: 0.0655 ------------------------------------------------------------------ rmse mean: 0.0696 =================================================================== K=16, lr=0.001, num_layers=2, hidden_dim=16, alpha=0.0 seed:0 [[[0.05673177 0.04157464]] [[0.12559007 0.10151312]] [[0.1107996 0.10172874]] [[0.04524496 0.03599722]]] rmse: 0.0774 ------------------------------------------------------------------ seed:1 [[[0.05871615 0.04644778]] [[0.11642618 0.10027111]] [[0.11440261 0.1080416 ]] [[0.04826621 0.03917692]]] rmse: 0.0790 ------------------------------------------------------------------ seed:2 [[[0.04191858 0.03396169]] [[0.10605103 0.09186653]] [[0.12087109 0.11530858]] [[0.04394851 0.03679544]]] rmse: 0.0738 ------------------------------------------------------------------ rmse mean: 0.0767 =================================================================== K=16, lr=0.001, num_layers=2, hidden_dim=16, alpha=0.0001 seed:0 [[[0.05668564 0.04153814]] [[0.11692718 0.09663428]] [[0.12094239 0.11635993]] [[0.04301932 0.03508179]]] rmse: 0.0784 ------------------------------------------------------------------ seed:1 [[[0.0585751 0.04630955]] [[0.11666116 0.10042868]] [[0.11440283 0.10804101]] [[0.04829926 0.03919853]]] rmse: 0.0790 ------------------------------------------------------------------ seed:2 [[[0.04187298 0.0339219 ]] [[0.10606917 0.09189143]] [[0.12082612 0.11527656]] [[0.04393222 0.03678755]]] rmse: 0.0738 ------------------------------------------------------------------ rmse mean: 0.0771 =================================================================== K=16, lr=0.001, num_layers=2, hidden_dim=16, alpha=0.001 seed:0 [[[0.05628807 0.04122052]] [[0.11618582 0.09628513]] [[0.12092468 0.11634516]] [[0.04300218 0.03510858]]] rmse: 0.0782 ------------------------------------------------------------------ seed:1 [[[0.05730631 0.04507395]] [[0.11665753 0.10072128]] [[0.11441309 0.10804288]] [[0.04859621 0.03936328]]] rmse: 0.0788 ------------------------------------------------------------------ seed:2 [[[0.04170427 0.03376439]] [[0.10608109 0.09195354]] [[0.12051295 0.1150346 ]] [[0.04376938 0.03668106]]] rmse: 0.0737 ------------------------------------------------------------------ rmse mean: 0.0769 =================================================================== K=16, lr=0.001, num_layers=2, hidden_dim=16, alpha=0.01 seed:0 [[[0.04540047 0.03658669]] [[0.11958484 0.11140124]] [[0.10643895 0.10107296]] [[0.04753242 0.03864825]]] rmse: 0.0758 ------------------------------------------------------------------ seed:1 [[[0.04811769 0.03628626]] [[0.12147899 0.11190593]] [[0.07333762 0.06502914]] [[0.04800285 0.03833371]]] rmse: 0.0678 ------------------------------------------------------------------ seed:2 [[[0.03414814 0.02624882]] [[0.1116393 0.0978976 ]] [[0.11265252 0.10965097]] [[0.03837403 0.03130283]]] rmse: 0.0702 ------------------------------------------------------------------ rmse mean: 0.0713 =================================================================== K=16, lr=0.001, num_layers=2, hidden_dim=32, alpha=0.0 seed:0 [[[0.04266422 0.03230684]] [[0.10865701 0.09406076]] [[0.11849782 0.1136968 ]] [[0.03871115 0.03044414]]] rmse: 0.0724 ------------------------------------------------------------------ seed:1 [[[0.0534995 0.04389478]] [[0.07072577 0.05687882]] [[0.08669062 0.0790183 ]] [[0.04879506 0.03903839]]] rmse: 0.0598 ------------------------------------------------------------------ seed:2 [[[0.031701 0.02485635]] [[0.06732967 0.0509512 ]] [[0.12039325 0.11486324]] [[0.0472803 0.03894043]]] rmse: 0.0620 ------------------------------------------------------------------ rmse mean: 0.0647 =================================================================== K=16, lr=0.001, num_layers=2, hidden_dim=32, alpha=0.0001 seed:0 [[[0.04263564 0.03230625]] [[0.1086197 0.09407699]] [[0.11833453 0.11340539]] [[0.03868783 0.03042714]]] rmse: 0.0723 ------------------------------------------------------------------ seed:1 [[[0.05346437 0.04386232]] [[0.07071158 0.05687685]] [[0.08673077 0.07906397]] [[0.04876282 0.03901758]]] rmse: 0.0598 ------------------------------------------------------------------ seed:2 [[[0.0316945 0.02484877]] [[0.067326 0.05095165]] [[0.12021853 0.11475956]] [[0.04726709 0.0389287 ]]] rmse: 0.0620 ------------------------------------------------------------------ rmse mean: 0.0647 =================================================================== K=16, lr=0.001, num_layers=2, hidden_dim=32, alpha=0.001 seed:0 [[[0.04252445 0.03231103]] [[0.12022469 0.09713373]] [[0.11891971 0.11477692]] [[0.04613985 0.03579704]]] rmse: 0.0760 ------------------------------------------------------------------ seed:1 [[[0.05318751 0.04359475]] [[0.10782958 0.09806873]] [[0.09483133 0.08944917]] [[0.04114511 0.03291902]]] rmse: 0.0701 ------------------------------------------------------------------ seed:2 [[[0.03162328 0.02477932]] [[0.06728733 0.05091358]] [[0.12089712 0.11576166]] [[0.03880954 0.03076825]]] rmse: 0.0601 ------------------------------------------------------------------ rmse mean: 0.0687 =================================================================== K=16, lr=0.001, num_layers=2, hidden_dim=32, alpha=0.01 seed:0 [[[0.04319579 0.03581565]] [[0.12509669 0.10229312]] [[0.11877094 0.11424648]] [[0.04163065 0.03158149]]] rmse: 0.0766 ------------------------------------------------------------------ seed:1 [[[0.05015558 0.04066414]] [[0.13652842 0.12763038]] [[0.08797549 0.081234 ]] [[0.04015491 0.03272211]]] rmse: 0.0746 ------------------------------------------------------------------ seed:2 [[[0.03158881 0.02460055]] [[0.11508462 0.10492855]] [[0.06625308 0.05495791]] [[0.03722513 0.0306584 ]]] rmse: 0.0582 ------------------------------------------------------------------ rmse mean: 0.0698 =================================================================== K=16, lr=0.001, num_layers=2, hidden_dim=64, alpha=0.0 seed:0 [[[0.03777994 0.02894404]] [[0.11353611 0.08952327]] [[0.11358654 0.10811452]] [[0.04488127 0.03657433]]] rmse: 0.0716 ------------------------------------------------------------------ seed:1 [[[0.04346425 0.03360963]] [[0.11156499 0.09492539]] [[0.11904327 0.11318134]] [[0.04516424 0.03647492]]] rmse: 0.0747 ------------------------------------------------------------------ seed:2 [[[0.05426267 0.04258715]] [[0.11472149 0.09422189]] [[0.10578323 0.10181898]] [[0.04405719 0.0338681 ]]] rmse: 0.0739 ------------------------------------------------------------------ rmse mean: 0.0734 =================================================================== K=16, lr=0.001, num_layers=2, hidden_dim=64, alpha=0.0001 seed:0 [[[0.03777268 0.02893953]] [[0.1135103 0.0895268 ]] [[0.11350492 0.10803096]] [[0.0448593 0.03655527]]] rmse: 0.0716 ------------------------------------------------------------------ seed:1 [[[0.04345268 0.03360062]] [[0.11157017 0.09492737]] [[0.1189939 0.11314414]] [[0.04540739 0.03741525]]] rmse: 0.0748 ------------------------------------------------------------------ seed:2 [[[0.0542106 0.04254339]] [[0.11470901 0.09419824]] [[0.10572559 0.10176627]] [[0.04404142 0.03387433]]] rmse: 0.0739 ------------------------------------------------------------------ rmse mean: 0.0734 =================================================================== K=16, lr=0.001, num_layers=2, hidden_dim=64, alpha=0.001 seed:0 [[[0.03759829 0.02883432]] [[0.11338668 0.08962227]] [[0.1125951 0.10708639]] [[0.04464774 0.0363523 ]]] rmse: 0.0713 ------------------------------------------------------------------ seed:1 [[[0.04341906 0.03359309]] [[0.1115941 0.09493443]] [[0.11863551 0.11289522]] [[0.04334923 0.0348499 ]]] rmse: 0.0742 ------------------------------------------------------------------ seed:2 [[[0.0540868 0.04240035]] [[0.11468903 0.09411378]] [[0.10537891 0.10140933]] [[0.04300747 0.03363154]]] rmse: 0.0736 ------------------------------------------------------------------ rmse mean: 0.0730 =================================================================== K=16, lr=0.001, num_layers=2, hidden_dim=64, alpha=0.01 seed:0 [[[0.04935352 0.03849522]] [[0.1068779 0.09452731]] [[0.11947545 0.11595692]] [[0.04758375 0.03880273]]] rmse: 0.0764 ------------------------------------------------------------------ seed:1 [[[0.04341291 0.03360955]] [[0.11180669 0.09500829]] [[0.11518325 0.11023909]] [[0.04481645 0.03714941]]] rmse: 0.0739 ------------------------------------------------------------------ seed:2 [[[0.03821056 0.02992193]] [[0.11404354 0.10154661]] [[0.11278727 0.1091244 ]] [[0.04697413 0.03726721]]] rmse: 0.0737 ------------------------------------------------------------------ rmse mean: 0.0747 =================================================================== K=16, lr=0.001, num_layers=2, hidden_dim=128, alpha=0.0 seed:0 [[[0.06086408 0.04848302]] [[0.11512577 0.10057141]] [[0.12326453 0.11893706]] [[0.0379096 0.03059444]]] rmse: 0.0795 ------------------------------------------------------------------ seed:1 [[[0.03641448 0.0274479 ]] [[0.1240222 0.099063 ]] [[0.10585587 0.09914909]] [[0.03936852 0.03158455]]] rmse: 0.0704 ------------------------------------------------------------------ seed:2 [[[0.02933787 0.02358929]] [[0.11234647 0.09411393]] [[0.08985053 0.08110247]] [[0.04043466 0.03317214]]] rmse: 0.0630 ------------------------------------------------------------------ rmse mean: 0.0709 =================================================================== K=16, lr=0.001, num_layers=2, hidden_dim=128, alpha=0.0001 seed:0 [[[0.06086302 0.04848966]] [[0.11511701 0.1005835 ]] [[0.1232263 0.11891386]] [[0.03790631 0.03059521]]] rmse: 0.0795 ------------------------------------------------------------------ seed:1 [[[0.0364106 0.02744414]] [[0.10906755 0.08867598]] [[0.10574394 0.09647241]] [[0.04370443 0.03587168]]] rmse: 0.0679 ------------------------------------------------------------------ seed:2 [[[0.02931112 0.02357618]] [[0.11236691 0.09413142]] [[0.08988596 0.08115114]] [[0.0404324 0.03317087]]] rmse: 0.0630 ------------------------------------------------------------------ rmse mean: 0.0701 =================================================================== K=16, lr=0.001, num_layers=2, hidden_dim=128, alpha=0.001 seed:0 [[[0.06084387 0.04852153]] [[0.11488356 0.10056297]] [[0.08748839 0.08004492]] [[0.04836499 0.04124934]]] rmse: 0.0727 ------------------------------------------------------------------ seed:1 [[[0.0363886 0.02741066]] [[0.10883737 0.0885521 ]] [[0.10712573 0.10093666]] [[0.04095378 0.03195845]]] rmse: 0.0678 ------------------------------------------------------------------ seed:2 [[[0.04516672 0.03657855]] [[0.1189353 0.09980283]] [[0.1230556 0.11848043]] [[0.04369242 0.03289908]]] rmse: 0.0773 ------------------------------------------------------------------ rmse mean: 0.0726 =================================================================== K=16, lr=0.001, num_layers=2, hidden_dim=128, alpha=0.01 seed:0 [[[0.04487392 0.03694725]] [[0.11154256 0.08766794]] [[0.08983154 0.0795729 ]] [[0.03815397 0.02969262]]] rmse: 0.0648 ------------------------------------------------------------------ seed:1 [[[0.03641821 0.02757619]] [[0.10545847 0.09586354]] [[0.11699208 0.11389214]] [[0.04602126 0.03842123]]] rmse: 0.0726 ------------------------------------------------------------------ seed:2 [[[0.0364609 0.02872061]] [[0.1096242 0.09550244]] [[0.12024906 0.10906501]] [[0.03524365 0.02829293]]] rmse: 0.0704 ------------------------------------------------------------------ rmse mean: 0.0693 =================================================================== K=16, lr=0.001, num_layers=2, hidden_dim=256, alpha=0.0 seed:0 [[[0.03339027 0.02734725]] [[0.12143007 0.09858313]] [[0.11952118 0.11376786]] [[0.04583852 0.03552888]]] rmse: 0.0744 ------------------------------------------------------------------ seed:1 [[[0.03039028 0.02357632]] [[0.11174028 0.08995344]] [[0.13658024 0.13126929]] [[0.03893294 0.0306989 ]]] rmse: 0.0741 ------------------------------------------------------------------ seed:2 [[[0.04784628 0.03576165]] [[0.11163317 0.09498105]] [[0.11037274 0.10614765]] [[0.03984564 0.03162836]]] rmse: 0.0723 ------------------------------------------------------------------ rmse mean: 0.0736 =================================================================== K=16, lr=0.001, num_layers=2, hidden_dim=256, alpha=0.0001 seed:0 [[[0.03325576 0.02727397]] [[0.1214266 0.09858532]] [[0.11950421 0.11376219]] [[0.04584231 0.03553269]]] rmse: 0.0744 ------------------------------------------------------------------ seed:1 [[[0.03038324 0.02357343]] [[0.11173127 0.08995305]] [[0.1104977 0.10601776]] [[0.03896205 0.03055741]]] rmse: 0.0677 ------------------------------------------------------------------ seed:2 [[[0.04784518 0.03575777]] [[0.11159172 0.09495699]] [[0.11036341 0.10614294]] [[0.03984268 0.03162684]]] rmse: 0.0723 ------------------------------------------------------------------ rmse mean: 0.0715 =================================================================== K=16, lr=0.001, num_layers=2, hidden_dim=256, alpha=0.001 seed:0 [[[0.05505658 0.0468531 ]] [[0.1028916 0.07974401]] [[0.08249829 0.07191263]] [[0.04137076 0.03374815]]] rmse: 0.0643 ------------------------------------------------------------------ seed:1 [[[0.03030452 0.02341137]] [[0.11163565 0.08992666]] [[0.1104682 0.10599113]] [[0.03902844 0.03059509]]] rmse: 0.0677 ------------------------------------------------------------------ seed:2 [[[0.04780339 0.03570366]] [[0.11090286 0.09452524]] [[0.11028171 0.1061031 ]] [[0.03998131 0.03173675]]] rmse: 0.0721 ------------------------------------------------------------------ rmse mean: 0.0680 =================================================================== K=16, lr=0.001, num_layers=2, hidden_dim=256, alpha=0.01 seed:0 [[[0.04715497 0.04046337]] [[0.0984418 0.08598601]] [[0.09700634 0.09340842]] [[0.03938988 0.02917126]]] rmse: 0.0664 ------------------------------------------------------------------ seed:1 [[[0.0300261 0.02295509]] [[0.11086942 0.09995349]] [[0.10558508 0.10094836]] [[0.0423479 0.03307483]]] rmse: 0.0682 ------------------------------------------------------------------ seed:2 [[[0.02994895 0.02215727]] [[0.11331868 0.09561749]] [[0.08263468 0.07327432]] [[0.04244897 0.03275425]]] rmse: 0.0615 ------------------------------------------------------------------ rmse mean: 0.0654 ===================================================================
K=16, lr=0.01, num_layers=1, hidden_dim=16, alpha=0.0 seed:0 [[[0.03760317 0.02782361]] [[0.11411925 0.09617055]] [[0.08385795 0.08105066]] [[0.03626964 0.02902591]]] rmse: 0.0632 ------------------------------------------------------------------ seed:1 [[[0.0302898 0.02107317]] [[0.11271366 0.09795506]] [[0.11505239 0.11209881]] [[0.0419407 0.03418222]]] rmse: 0.0707 ------------------------------------------------------------------ seed:2 [[[0.02797515 0.01907183]] [[0.11032128 0.09033501]] [[0.11573333 0.11160446]] [[0.03488613 0.02901298]]] rmse: 0.0674 ------------------------------------------------------------------ rmse mean: 0.0671 =================================================================== K=16, lr=0.01, num_layers=1, hidden_dim=16, alpha=0.0001 seed:0 [[[0.03760154 0.02782179]] [[0.11409795 0.09615541]] [[0.08386486 0.08105816]] [[0.03626987 0.02902615]]] rmse: 0.0632 ------------------------------------------------------------------ seed:1 [[[0.03028967 0.02107307]] [[0.1127132 0.09795496]] [[0.1150531 0.11209972]] [[0.04193885 0.03418072]]] rmse: 0.0707 ------------------------------------------------------------------ seed:2 [[[0.02797996 0.01907334]] [[0.11030883 0.09032312]] [[0.11573961 0.11160971]] [[0.0349393 0.02908129]]] rmse: 0.0674 ------------------------------------------------------------------ rmse mean: 0.0671 =================================================================== K=16, lr=0.01, num_layers=1, hidden_dim=16, alpha=0.001 seed:0 [[[0.03758975 0.02781235]] [[0.11410746 0.09617261]] [[0.08387155 0.08106739]] [[0.03626916 0.02902523]]] rmse: 0.0632 ------------------------------------------------------------------ seed:1 [[[0.0302011 0.02102285]] [[0.11269206 0.09794704]] [[0.11505528 0.11210111]] [[0.04192345 0.03416953]]] rmse: 0.0706 ------------------------------------------------------------------ seed:2 [[[0.02801676 0.01909114]] [[0.11036577 0.09038193]] [[0.11581958 0.11168286]] [[0.03909818 0.030766 ]]] rmse: 0.0682 ------------------------------------------------------------------ rmse mean: 0.0673 =================================================================== K=16, lr=0.01, num_layers=1, hidden_dim=16, alpha=0.01 seed:0 [[[0.03750971 0.02773803]] [[0.11424247 0.09636146]] [[0.08391559 0.08111217]] [[0.03626833 0.02902259]]] rmse: 0.0633 ------------------------------------------------------------------ seed:1 [[[0.03015422 0.02100027]] [[0.11246993 0.09782449]] [[0.11764614 0.11384965]] [[0.03533688 0.02914678]]] rmse: 0.0697 ------------------------------------------------------------------ seed:2 [[[0.02831783 0.01924977]] [[0.11068492 0.09072032]] [[0.11647748 0.11225031]] [[0.0388854 0.02954337]]] rmse: 0.0683 ------------------------------------------------------------------ rmse mean: 0.0671 =================================================================== K=16, lr=0.01, num_layers=1, hidden_dim=32, alpha=0.0 seed:0 [[[0.03156553 0.02224434]] [[0.107492 0.09779408]] [[0.1024619 0.09973717]] [[0.04060489 0.03322953]]] rmse: 0.0669 ------------------------------------------------------------------ seed:1 [[[0.02768732 0.0212465 ]] [[0.11024914 0.1005482 ]] [[0.10685108 0.10514091]] [[0.04255708 0.03461595]]] rmse: 0.0686 ------------------------------------------------------------------ seed:2 [[[0.03257075 0.02289294]] [[0.11146603 0.09639744]] [[0.1116352 0.11016572]] [[0.03444337 0.02715588]]] rmse: 0.0683 ------------------------------------------------------------------ rmse mean: 0.0679 =================================================================== K=16, lr=0.01, num_layers=1, hidden_dim=32, alpha=0.0001 seed:0 [[[0.03156547 0.02224444]] [[0.1074934 0.09779484]] [[0.1024642 0.09973992]] [[0.04060414 0.03322898]]] rmse: 0.0669 ------------------------------------------------------------------ seed:1 [[[0.02768755 0.0212483 ]] [[0.1102611 0.1005572 ]] [[0.10685522 0.10514526]] [[0.04255763 0.03461665]]] rmse: 0.0686 ------------------------------------------------------------------ seed:2 [[[0.03257128 0.02289319]] [[0.11143341 0.09638428]] [[0.11163657 0.11016727]] [[0.03444058 0.02715759]]] rmse: 0.0683 ------------------------------------------------------------------ rmse mean: 0.0679 =================================================================== K=16, lr=0.01, num_layers=1, hidden_dim=32, alpha=0.001 seed:0 [[[0.03156487 0.02224398]] [[0.10750825 0.09779623]] [[0.10248071 0.09976144]] [[0.04058792 0.03321731]]] rmse: 0.0669 ------------------------------------------------------------------ seed:1 [[[0.02769258 0.02124629]] [[0.11197485 0.09687523]] [[0.10629113 0.10481536]] [[0.03626747 0.02878706]]] rmse: 0.0667 ------------------------------------------------------------------ seed:2 [[[0.03257756 0.02289554]] [[0.11129511 0.09635116]] [[0.11163575 0.11016659]] [[0.0344487 0.02715585]]] rmse: 0.0683 ------------------------------------------------------------------ rmse mean: 0.0673 =================================================================== K=16, lr=0.01, num_layers=1, hidden_dim=32, alpha=0.01 seed:0 [[[0.03155507 0.02223344]] [[0.10765549 0.09784513]] [[0.10273527 0.10008633]] [[0.04042186 0.0330576 ]]] rmse: 0.0669 ------------------------------------------------------------------ seed:1 [[[0.02771695 0.02123464]] [[0.11337045 0.09767734]] [[0.10641563 0.104686 ]] [[0.0425072 0.03456387]]] rmse: 0.0685 ------------------------------------------------------------------ seed:2 [[[0.03263642 0.02292211]] [[0.11186673 0.09648448]] [[0.11172077 0.1102458 ]] [[0.0345374 0.02721479]]] rmse: 0.0685 ------------------------------------------------------------------ rmse mean: 0.0680 =================================================================== K=16, lr=0.01, num_layers=1, hidden_dim=64, alpha=0.0 seed:0 [[[0.0307165 0.02359253]] [[0.12693212 0.10497252]] [[0.11952836 0.11476451]] [[0.0327869 0.02740154]]] rmse: 0.0726 ------------------------------------------------------------------ seed:1 [[[0.02661342 0.01803923]] [[0.10960256 0.09658329]] [[0.12079884 0.11537179]] [[0.0339941 0.02786568]]] rmse: 0.0686 ------------------------------------------------------------------ seed:2 [[[0.04971522 0.04012228]] [[0.12484853 0.10268443]] [[0.11388183 0.1072357 ]] [[0.03955823 0.03164546]]] rmse: 0.0762 ------------------------------------------------------------------ rmse mean: 0.0725 =================================================================== K=16, lr=0.01, num_layers=1, hidden_dim=64, alpha=0.0001 seed:0 [[[0.03071929 0.02359627]] [[0.12693204 0.10497257]] [[0.11953016 0.11476729]] [[0.03278694 0.02740162]]] rmse: 0.0726 ------------------------------------------------------------------ seed:1 [[[0.02661321 0.01803917]] [[0.10960146 0.09658022]] [[0.12080398 0.11537665]] [[0.0339943 0.0278658 ]]] rmse: 0.0686 ------------------------------------------------------------------ seed:2 [[[0.03257872 0.02188176]] [[0.11233416 0.08894548]] [[0.1202601 0.11517538]] [[0.03512764 0.02886471]]] rmse: 0.0694 ------------------------------------------------------------------ rmse mean: 0.0702 =================================================================== K=16, lr=0.01, num_layers=1, hidden_dim=64, alpha=0.001 seed:0 [[[0.03072284 0.02360002]] [[0.12692762 0.10496939]] [[0.11952791 0.11476688]] [[0.03278637 0.02740044]]] rmse: 0.0726 ------------------------------------------------------------------ seed:1 [[[0.02661388 0.0180386 ]] [[0.10959831 0.09657702]] [[0.12080148 0.11537312]] [[0.03399486 0.02786471]]] rmse: 0.0686 ------------------------------------------------------------------ seed:2 [[[0.03207945 0.02551651]] [[0.11034543 0.09956747]] [[0.09169318 0.08302984]] [[0.03513245 0.02886939]]] rmse: 0.0633 ------------------------------------------------------------------ rmse mean: 0.0682 =================================================================== K=16, lr=0.01, num_layers=1, hidden_dim=64, alpha=0.01 seed:0 [[[0.03072419 0.02356549]] [[0.12691986 0.10496533]] [[0.11909822 0.11455332]] [[0.032787 0.02739165]]] rmse: 0.0725 ------------------------------------------------------------------ seed:1 [[[0.0266477 0.01805785]] [[0.10958736 0.096557 ]] [[0.12076025 0.11536372]] [[0.03392477 0.02779174]]] rmse: 0.0686 ------------------------------------------------------------------ seed:2 [[[0.02668835 0.02041247]] [[0.11871646 0.10136721]] [[0.11784939 0.1144969 ]] [[0.03559325 0.02838941]]] rmse: 0.0704 ------------------------------------------------------------------ rmse mean: 0.0705 =================================================================== K=16, lr=0.01, num_layers=1, hidden_dim=128, alpha=0.0 seed:0 [[[0.04237631 0.03824248]] [[0.11149518 0.10219393]] [[0.0905429 0.083574 ]] [[0.03614227 0.02940698]]] rmse: 0.0667 ------------------------------------------------------------------ seed:1 [[[0.03072141 0.0230357 ]] [[0.11330777 0.09754582]] [[0.1188732 0.11236345]] [[0.03586232 0.02890239]]] rmse: 0.0701 ------------------------------------------------------------------ seed:2 [[[0.03285232 0.02402508]] [[0.10728824 0.10018903]] [[0.12023569 0.11440817]] [[0.034069 0.02793012]]] rmse: 0.0701 ------------------------------------------------------------------ rmse mean: 0.0690 =================================================================== K=16, lr=0.01, num_layers=1, hidden_dim=128, alpha=0.0001 seed:0 [[[0.02944121 0.02303998]] [[0.12274526 0.10190746]] [[0.05053952 0.04192693]] [[0.03497413 0.02950716]]] rmse: 0.0543 ------------------------------------------------------------------ seed:1 [[[0.03071907 0.02303569]] [[0.11326011 0.09753785]] [[0.11886897 0.11236108]] [[0.03585753 0.02889817]]] rmse: 0.0701 ------------------------------------------------------------------ seed:2 [[[0.0328528 0.02402539]] [[0.10727188 0.10017722]] [[0.12029689 0.11443015]] [[0.03406927 0.02793038]]] rmse: 0.0701 ------------------------------------------------------------------ rmse mean: 0.0648 =================================================================== K=16, lr=0.01, num_layers=1, hidden_dim=128, alpha=0.001 seed:0 [[[0.02935545 0.02287345]] [[0.12276921 0.10192306]] [[0.04394124 0.03829088]] [[0.03527651 0.02874562]]] rmse: 0.0529 ------------------------------------------------------------------ seed:1 [[[0.03069051 0.02301176]] [[0.11276994 0.09753651]] [[0.11883323 0.11234635]] [[0.03585246 0.02889172]]] rmse: 0.0700 ------------------------------------------------------------------ seed:2 [[[0.03283498 0.02400877]] [[0.10729603 0.10020541]] [[0.12022594 0.11440815]] [[0.0340697 0.02793006]]] rmse: 0.0701 ------------------------------------------------------------------ rmse mean: 0.0643 =================================================================== K=16, lr=0.01, num_layers=1, hidden_dim=128, alpha=0.01 seed:0 [[[0.02963667 0.02049373]] [[0.11155169 0.10233493]] [[0.08990269 0.08311729]] [[0.03736606 0.03085235]]] rmse: 0.0632 ------------------------------------------------------------------ seed:1 [[[0.03047868 0.02297797]] [[0.11193528 0.09746751]] [[0.11852902 0.11228101]] [[0.03579278 0.02884481]]] rmse: 0.0698 ------------------------------------------------------------------ seed:2 [[[0.03275866 0.02394689]] [[0.10754027 0.10053406]] [[0.12009583 0.11436174]] [[0.03416341 0.02794623]]] rmse: 0.0702 ------------------------------------------------------------------ rmse mean: 0.0677 =================================================================== K=16, lr=0.01, num_layers=1, hidden_dim=256, alpha=0.0 seed:0 [[[0.0308985 0.02157277]] [[0.1132746 0.09947547]] [[0.09628003 0.09294042]] [[0.03826308 0.030989 ]]] rmse: 0.0655 ------------------------------------------------------------------ seed:1 [[[0.027646 0.02038637]] [[0.1147467 0.10128794]] [[0.11660912 0.11397524]] [[0.03302176 0.02781271]]] rmse: 0.0694 ------------------------------------------------------------------ seed:2 [[[0.02671651 0.01999157]] [[0.11002655 0.09785576]] [[0.02713914 0.01699354]] [[0.03485296 0.028494 ]]] rmse: 0.0453 ------------------------------------------------------------------ rmse mean: 0.0601 =================================================================== K=16, lr=0.01, num_layers=1, hidden_dim=256, alpha=0.0001 seed:0 [[[0.03091998 0.02159358]] [[0.11325451 0.09945647]] [[0.09629156 0.09295393]] [[0.0386367 0.03266149]]] rmse: 0.0657 ------------------------------------------------------------------ seed:1 [[[0.02816471 0.02139015]] [[0.11471967 0.10122575]] [[0.11660979 0.11397591]] [[0.03302157 0.0278111 ]]] rmse: 0.0696 ------------------------------------------------------------------ seed:2 [[[0.02671516 0.01999336]] [[0.11005631 0.09786466]] [[0.02984713 0.02022866]] [[0.03485837 0.0284948 ]]] rmse: 0.0460 ------------------------------------------------------------------ rmse mean: 0.0604 =================================================================== K=16, lr=0.01, num_layers=1, hidden_dim=256, alpha=0.001 seed:0 [[[0.03092279 0.02159537]] [[0.12226051 0.0974913 ]] [[0.09510205 0.09096995]] [[0.0346556 0.02970811]]] rmse: 0.0653 ------------------------------------------------------------------ seed:1 [[[0.02865095 0.02264041]] [[0.11496955 0.10120192]] [[0.11663558 0.11399161]] [[0.03301966 0.02779778]]] rmse: 0.0699 ------------------------------------------------------------------ seed:2 [[[0.02842207 0.02213053]] [[0.04140481 0.03264281]] [[0.04201618 0.0370477 ]] [[0.03479755 0.02809854]]] rmse: 0.0333 ------------------------------------------------------------------ rmse mean: 0.0562 =================================================================== K=16, lr=0.01, num_layers=1, hidden_dim=256, alpha=0.01 seed:0 [[[0.03093864 0.02159376]] [[0.07005971 0.06289832]] [[0.12512694 0.11817716]] [[0.03489581 0.02831566]]] rmse: 0.0615 ------------------------------------------------------------------ seed:1 [[[0.0294126 0.02321308]] [[0.11505331 0.10007051]] [[0.11679132 0.11408124]] [[0.03300158 0.02766426]]] rmse: 0.0699 ------------------------------------------------------------------ seed:2 [[[0.02673434 0.0202473 ]] [[0.11015667 0.09786172]] [[0.02950061 0.02204448]] [[0.03476212 0.02877822]]] rmse: 0.0463 ------------------------------------------------------------------ rmse mean: 0.0592 =================================================================== K=16, lr=0.01, num_layers=2, hidden_dim=16, alpha=0.0 seed:0 [[[0.03233259 0.02605617]] [[0.11256649 0.10448702]] [[0.10116338 0.09911471]] [[0.0346998 0.02834553]]] rmse: 0.0673 ------------------------------------------------------------------ seed:1 [[[0.03041122 0.0204677 ]] [[0.04168246 0.03518302]] [[0.12040899 0.11425913]] [[0.03425222 0.02860738]]] rmse: 0.0532 ------------------------------------------------------------------ seed:2 [[[0.02858094 0.02008633]] [[0.10689571 0.096064 ]] [[0.09966879 0.09824012]] [[0.03421267 0.02870722]]] rmse: 0.0641 ------------------------------------------------------------------ rmse mean: 0.0615 =================================================================== K=16, lr=0.01, num_layers=2, hidden_dim=16, alpha=0.0001 seed:0 [[[0.03237042 0.02611753]] [[0.11256404 0.10448098]] [[0.10116363 0.09911486]] [[0.03469816 0.02834654]]] rmse: 0.0674 ------------------------------------------------------------------ seed:1 [[[0.03041125 0.02046831]] [[0.03981308 0.03084388]] [[0.14075435 0.13693645]] [[0.03308028 0.02724564]]] rmse: 0.0574 ------------------------------------------------------------------ seed:2 [[[0.02857825 0.02007919]] [[0.10706327 0.09590399]] [[0.10255095 0.0910606 ]] [[0.0329725 0.02798342]]] rmse: 0.0633 ------------------------------------------------------------------ rmse mean: 0.0627 =================================================================== K=16, lr=0.01, num_layers=2, hidden_dim=16, alpha=0.001 seed:0 [[[0.03217084 0.02586386]] [[0.11250699 0.10438783]] [[0.10117494 0.09912534]] [[0.03468387 0.02835803]]] rmse: 0.0673 ------------------------------------------------------------------ seed:1 [[[0.03041751 0.02046862]] [[0.06803352 0.06130475]] [[0.09692067 0.09413389]] [[0.03387538 0.02748181]]] rmse: 0.0541 ------------------------------------------------------------------ seed:2 [[[0.02856159 0.02004485]] [[0.10696351 0.0964317 ]] [[0.10279779 0.09766107]] [[0.03417162 0.02782006]]] rmse: 0.0643 ------------------------------------------------------------------ rmse mean: 0.0619 =================================================================== K=16, lr=0.01, num_layers=2, hidden_dim=16, alpha=0.01 seed:0 [[[0.02854276 0.02152457]] [[0.11467818 0.09834173]] [[0.08295501 0.07753251]] [[0.03271432 0.02632617]]] rmse: 0.0603 ------------------------------------------------------------------ seed:1 [[[0.03046558 0.02048401]] [[0.11848281 0.10053115]] [[0.08821333 0.08264863]] [[0.03362754 0.02816299]]] rmse: 0.0628 ------------------------------------------------------------------ seed:2 [[[0.02843942 0.01979977]] [[0.1071619 0.09528702]] [[0.05321265 0.0431394 ]] [[0.03585873 0.03104501]]] rmse: 0.0517 ------------------------------------------------------------------ rmse mean: 0.0583 =================================================================== K=16, lr=0.01, num_layers=2, hidden_dim=32, alpha=0.0 seed:0 [[[0.02997921 0.02102445]] [[0.10907377 0.09928606]] [[0.11906663 0.11435549]] [[0.03521054 0.03037072]]] rmse: 0.0698 ------------------------------------------------------------------ seed:1 [[[0.02495424 0.01861517]] [[0.11002245 0.09806319]] [[0.11834596 0.11696011]] [[0.03399686 0.02734416]]] rmse: 0.0685 ------------------------------------------------------------------ seed:2 [[[0.04406757 0.03662939]] [[0.05689577 0.04962217]] [[0.02955387 0.0234203 ]] [[0.03498678 0.02908416]]] rmse: 0.0380 ------------------------------------------------------------------ rmse mean: 0.0588 =================================================================== K=16, lr=0.01, num_layers=2, hidden_dim=32, alpha=0.0001 seed:0 [[[0.02998145 0.02101452]] [[0.10905098 0.09926525]] [[0.11906986 0.11435709]] [[0.03521872 0.03038307]]] rmse: 0.0698 ------------------------------------------------------------------ seed:1 [[[0.02570422 0.02009136]] [[0.10999669 0.09801982]] [[0.10412309 0.1024235 ]] [[0.03399414 0.02734263]]] rmse: 0.0652 ------------------------------------------------------------------ seed:2 [[[0.11390963 0.09272588]] [[0.11320129 0.09986873]] [[0.08378011 0.07423742]] [[0.03650365 0.02726209]]] rmse: 0.0802 ------------------------------------------------------------------ rmse mean: 0.0717 =================================================================== K=16, lr=0.01, num_layers=2, hidden_dim=32, alpha=0.001 seed:0 [[[0.03030939 0.02077913]] [[0.1091541 0.09933327]] [[0.11908089 0.11435812]] [[0.03517054 0.03015694]]] rmse: 0.0698 ------------------------------------------------------------------ seed:1 [[[0.07115097 0.06102061]] [[0.1159914 0.0990829 ]] [[0.1494737 0.14399405]] [[0.03502589 0.02891508]]] rmse: 0.0881 ------------------------------------------------------------------ seed:2 [[[0.03398584 0.02651199]] [[0.11091739 0.10155964]] [[0.0869046 0.08038223]] [[0.03476979 0.02888511]]] rmse: 0.0630 ------------------------------------------------------------------ rmse mean: 0.0736 =================================================================== K=16, lr=0.01, num_layers=2, hidden_dim=32, alpha=0.01 seed:0 [[[0.02933996 0.02140497]] [[0.11083309 0.10073136]] [[0.0894921 0.08316307]] [[0.0370613 0.03201713]]] rmse: 0.0630 ------------------------------------------------------------------ seed:1 [[[0.0380994 0.03111693]] [[0.11083908 0.09862193]] [[0.14677916 0.13948689]] [[0.03397909 0.02887403]]] rmse: 0.0785 ------------------------------------------------------------------ seed:2 [[[0.02986365 0.02473096]] [[0.098428 0.08852948]] [[0.02516203 0.01669813]] [[0.03988242 0.03458134]]] rmse: 0.0447 ------------------------------------------------------------------ rmse mean: 0.0621 =================================================================== K=16, lr=0.01, num_layers=2, hidden_dim=64, alpha=0.0 seed:0 [[[0.11885835 0.10154086]] [[0.10481663 0.09559224]] [[0.0719928 0.0667422 ]] [[0.03401911 0.0289243 ]]] rmse: 0.0778 ------------------------------------------------------------------ seed:1 [[[0.04694378 0.04219887]] [[0.1190169 0.09945997]] [[0.07833241 0.072525 ]] [[0.10045981 0.0907306 ]]] rmse: 0.0812 ------------------------------------------------------------------ seed:2 [[[0.08626024 0.07329038]] [[0.11458098 0.10583259]] [[0.035966 0.02708433]] [[0.06926777 0.05240023]]] rmse: 0.0706 ------------------------------------------------------------------ rmse mean: 0.0765 =================================================================== K=16, lr=0.01, num_layers=2, hidden_dim=64, alpha=0.0001 seed:0 [[[0.11805014 0.10082217]] [[0.10488122 0.09564308]] [[0.08260697 0.07709882]] [[0.03401959 0.02892559]]] rmse: 0.0803 ------------------------------------------------------------------ seed:1 [[[0.04783729 0.04174824]] [[0.0416918 0.03327018]] [[0.12271358 0.11317806]] [[0.04344642 0.03387861]]] rmse: 0.0597 ------------------------------------------------------------------ seed:2 [[[0.08593896 0.07302676]] [[0.05120482 0.0445109 ]] [[0.10651217 0.10200846]] [[0.03605661 0.03151548]]] rmse: 0.0663 ------------------------------------------------------------------ rmse mean: 0.0688 =================================================================== K=16, lr=0.01, num_layers=2, hidden_dim=64, alpha=0.001 seed:0 [[[0.1236811 0.1056067 ]] [[0.10563552 0.09626365]] [[0.02419818 0.01551554]] [[0.03460754 0.02936475]]] rmse: 0.0669 ------------------------------------------------------------------ seed:1 [[[0.07475463 0.06411395]] [[0.1131553 0.09971681]] [[0.08488559 0.08071127]] [[0.03394166 0.02826297]]] rmse: 0.0724 ------------------------------------------------------------------ seed:2 [[[0.08626884 0.07329634]] [[0.04867039 0.03457914]] [[0.12374019 0.11534961]] [[0.03409633 0.02732557]]] rmse: 0.0679 ------------------------------------------------------------------ rmse mean: 0.0691 =================================================================== K=16, lr=0.01, num_layers=2, hidden_dim=64, alpha=0.01 seed:0 [[[0.02599613 0.01702121]] [[0.11496283 0.09902683]] [[0.07069416 0.0647052 ]] [[0.03366667 0.02706097]]] rmse: 0.0566 ------------------------------------------------------------------ seed:1 [[[0.03415614 0.03038041]] [[0.11449531 0.1033513 ]] [[0.10232942 0.10076857]] [[0.08552069 0.07780097]]] rmse: 0.0811 ------------------------------------------------------------------ seed:2 [[[0.0896808 0.0759861 ]] [[0.11576266 0.08957003]] [[0.08877594 0.08593864]] [[0.03479631 0.02848008]]] rmse: 0.0761 ------------------------------------------------------------------ rmse mean: 0.0713 =================================================================== K=16, lr=0.01, num_layers=2, hidden_dim=128, alpha=0.0 seed:0 [[[0.03156517 0.02492164]] [[0.12120867 0.10294164]] [[0.1186484 0.10699645]] [[0.06660107 0.06034576]]] rmse: 0.0792 ------------------------------------------------------------------ seed:1 [[[0.13017768 0.10803466]] [[0.12520232 0.10687816]] [[0.06999115 0.06713333]] [[0.03813085 0.0310965 ]]] rmse: 0.0846 ------------------------------------------------------------------ seed:2 [[[0.02970129 0.0188762 ]] [[0.12993679 0.10724889]] [[0.1019906 0.09737821]] [[0.03741052 0.03312665]]] rmse: 0.0695 ------------------------------------------------------------------ rmse mean: 0.0777 =================================================================== K=16, lr=0.01, num_layers=2, hidden_dim=128, alpha=0.0001 seed:0 [[[0.11916724 0.11756178]] [[0.17215363 0.14283625]] [[0.10332605 0.09744344]] [[0.10016661 0.09429329]]] rmse: 0.1184 ------------------------------------------------------------------ seed:1 [[[0.13125563 0.10942685]] [[0.11897932 0.09962778]] [[0.07167568 0.05908975]] [[0.03437252 0.02952957]]] rmse: 0.0817 ------------------------------------------------------------------ seed:2 [[[0.03395577 0.03008401]] [[0.11439719 0.1026843 ]] [[0.09097755 0.08745205]] [[0.06472556 0.05749544]]] rmse: 0.0727 ------------------------------------------------------------------ rmse mean: 0.0909 =================================================================== K=16, lr=0.01, num_layers=2, hidden_dim=128, alpha=0.001 seed:0 [[[0.07267587 0.06227633]] [[0.07222401 0.06625302]] [[0.03393975 0.02856358]] [[0.07989508 0.07236335]]] rmse: 0.0610 ------------------------------------------------------------------ seed:1 [[[0.03026421 0.02583864]] [[0.11621688 0.10626747]] [[0.09503528 0.08550904]] [[0.06452435 0.05616109]]] rmse: 0.0725 ------------------------------------------------------------------ seed:2 [[[0.05015717 0.04408518]] [[0.11367438 0.10148312]] [[0.08963288 0.08606521]] [[0.04026681 0.03173471]]] rmse: 0.0696 ------------------------------------------------------------------ rmse mean: 0.0677 =================================================================== K=16, lr=0.01, num_layers=2, hidden_dim=128, alpha=0.01 seed:0 [[[0.04007761 0.02713956]] [[0.11200056 0.09890663]] [[0.08541722 0.06966205]] [[0.05257328 0.03981595]]] rmse: 0.0657 ------------------------------------------------------------------ seed:1 [[[0.108926 0.09264493]] [[0.11082068 0.10244453]] [[0.05320968 0.04568659]] [[0.0475739 0.04038382]]] rmse: 0.0752 ------------------------------------------------------------------ seed:2 [[[0.10210102 0.08814974]] [[0.11624474 0.09968924]] [[0.0904324 0.08341346]] [[0.04726727 0.03565926]]] rmse: 0.0829 ------------------------------------------------------------------ rmse mean: 0.0746 =================================================================== K=16, lr=0.01, num_layers=2, hidden_dim=256, alpha=0.0 seed:0 [[[0.02776393 0.02214674]] [[0.16244339 0.1340213 ]] [[0.08957023 0.08363101]] [[0.05469874 0.04538459]]] rmse: 0.0775 ------------------------------------------------------------------ seed:1 [[[0.13531604 0.11680063]] [[0.17669651 0.14709626]] [[0.14194237 0.12816987]] [[0.13263396 0.12883987]]] rmse: 0.1384 ------------------------------------------------------------------ seed:2 [[[0.02664352 0.01869047]] [[0.17388192 0.14446234]] [[0.15229622 0.11795508]] [[0.03947488 0.03350089]]] rmse: 0.0884 ------------------------------------------------------------------ rmse mean: 0.1014 =================================================================== K=16, lr=0.01, num_layers=2, hidden_dim=256, alpha=0.0001 seed:0 [[[0.0315103 0.02616035]] [[0.10638789 0.09323395]] [[0.03434804 0.0252349 ]] [[0.03866622 0.03309332]]] rmse: 0.0486 ------------------------------------------------------------------ seed:1 [[[0.13540811 0.11688099]] [[0.16722741 0.13815644]] [[0.15239187 0.11795286]] [[0.03598273 0.0314372 ]]] rmse: 0.1119 ------------------------------------------------------------------ seed:2 [[[0.05704053 0.04777524]] [[0.17375865 0.14434513]] [[0.09174843 0.08905709]] [[0.03362916 0.02900568]]] rmse: 0.0833 ------------------------------------------------------------------ rmse mean: 0.0813 =================================================================== K=16, lr=0.01, num_layers=2, hidden_dim=256, alpha=0.001 seed:0 [[[0.12505764 0.11148768]] [[0.04352708 0.03254633]] [[0.11716293 0.11548292]] [[0.08167102 0.07411641]]] rmse: 0.0876 ------------------------------------------------------------------ seed:1 [[[0.13541908 0.11688858]] [[0.17424355 0.14482984]] [[0.15216994 0.11788622]] [[0.04014152 0.03332559]]] rmse: 0.1144 ------------------------------------------------------------------ seed:2 [[[0.02371155 0.01737667]] [[0.0704607 0.05213472]] [[0.62441568 0.61660305]] [[0.03748577 0.03258741]]] rmse: 0.1843 ------------------------------------------------------------------ rmse mean: 0.1288 =================================================================== K=16, lr=0.01, num_layers=2, hidden_dim=256, alpha=0.01 seed:0 [[[0.05060483 0.04315425]] [[0.1647557 0.13511914]] [[0.27738479 0.25652828]] [[0.03987895 0.03302791]]] rmse: 0.1251 ------------------------------------------------------------------ seed:1 [[[0.13540299 0.11687613]] [[0.17418653 0.1447705 ]] [[0.15204398 0.1178743 ]] [[0.03908773 0.03227769]]] rmse: 0.1141 ------------------------------------------------------------------ seed:2 [[[0.05358292 0.04896742]] [[0.08906069 0.07316073]] [[0.06574866 0.05272185]] [[0.09157192 0.07982532]]] rmse: 0.0693 ------------------------------------------------------------------ rmse mean: 0.1028 ===================================================================
K=32, lr=0.001, num_layers=1, hidden_dim=16, alpha=0.0 seed:0 [[[0.0419174 0.03152137]] [[0.12674137 0.10100168]] [[0.07085089 0.06074013]] [[0.04859356 0.03960291]]] rmse: 0.0651 ------------------------------------------------------------------ seed:1 [[[0.04316346 0.0336876 ]] [[0.13244767 0.10597091]] [[0.06939991 0.06014254]] [[0.0745369 0.06222527]]] rmse: 0.0727 ------------------------------------------------------------------ seed:2 [[[0.0373737 0.0303129 ]] [[0.10998818 0.09637215]] [[0.10969973 0.10426526]] [[0.05551989 0.0461785 ]]] rmse: 0.0737 ------------------------------------------------------------------ rmse mean: 0.0705 =================================================================== K=32, lr=0.001, num_layers=1, hidden_dim=16, alpha=0.0001 seed:0 [[[0.04191855 0.03152363]] [[0.12670706 0.10097626]] [[0.07098577 0.06084908]] [[0.0485904 0.0396009 ]]] rmse: 0.0651 ------------------------------------------------------------------ seed:1 [[[0.04316517 0.03368856]] [[0.13239998 0.10594037]] [[0.06924568 0.05997539]] [[0.07479275 0.06250392]]] rmse: 0.0727 ------------------------------------------------------------------ seed:2 [[[0.03731558 0.03024599]] [[0.10999594 0.09638503]] [[0.10964637 0.10421803]] [[0.05553402 0.04618964]]] rmse: 0.0737 ------------------------------------------------------------------ rmse mean: 0.0705 =================================================================== K=32, lr=0.001, num_layers=1, hidden_dim=16, alpha=0.001 seed:0 [[[0.04191184 0.03152574]] [[0.10344858 0.08890575]] [[0.08434869 0.07707513]] [[0.03911995 0.03106881]]] rmse: 0.0622 ------------------------------------------------------------------ seed:1 [[[0.04312171 0.03367853]] [[0.13209533 0.10580845]] [[0.06928952 0.06004134]] [[0.06947207 0.057459 ]]] rmse: 0.0714 ------------------------------------------------------------------ seed:2 [[[0.03685611 0.02978476]] [[0.10996461 0.09631731]] [[0.10919365 0.10382385]] [[0.05546216 0.04619599]]] rmse: 0.0734 ------------------------------------------------------------------ rmse mean: 0.0690 =================================================================== K=32, lr=0.001, num_layers=1, hidden_dim=16, alpha=0.01 seed:0 [[[0.04156496 0.03129091]] [[0.11031534 0.10386775]] [[0.09747177 0.09156431]] [[0.04633938 0.03901625]]] rmse: 0.0702 ------------------------------------------------------------------ seed:1 [[[0.03631134 0.02836399]] [[0.10705537 0.09911123]] [[0.09216878 0.08352941]] [[0.04639604 0.03605447]]] rmse: 0.0661 ------------------------------------------------------------------ seed:2 [[[0.03757047 0.0292134 ]] [[0.11810039 0.10564102]] [[0.10627268 0.10041626]] [[0.04791714 0.0374561 ]]] rmse: 0.0728 ------------------------------------------------------------------ rmse mean: 0.0697 =================================================================== K=32, lr=0.001, num_layers=1, hidden_dim=32, alpha=0.0 seed:0 [[[0.045328 0.03565908]] [[0.11537146 0.09701207]] [[0.09877598 0.08662214]] [[0.0552317 0.04737069]]] rmse: 0.0727 ------------------------------------------------------------------ seed:1 [[[0.04592084 0.03661861]] [[0.09030368 0.07952608]] [[0.09720892 0.08709383]] [[0.04877128 0.03973406]]] rmse: 0.0656 ------------------------------------------------------------------ seed:2 [[[0.03657518 0.02936733]] [[0.07577485 0.06166312]] [[0.07145902 0.05683952]] [[0.04675788 0.03670967]]] rmse: 0.0519 ------------------------------------------------------------------ rmse mean: 0.0634 =================================================================== K=32, lr=0.001, num_layers=1, hidden_dim=32, alpha=0.0001 seed:0 [[[0.04532413 0.03566302]] [[0.11540666 0.09704799]] [[0.09874911 0.08659936]] [[0.05557122 0.04769998]]] rmse: 0.0728 ------------------------------------------------------------------ seed:1 [[[0.04592214 0.0366209 ]] [[0.0903218 0.07956121]] [[0.09719563 0.08708089]] [[0.04877728 0.03973029]]] rmse: 0.0657 ------------------------------------------------------------------ seed:2 [[[0.03655682 0.02935407]] [[0.07576049 0.06165705]] [[0.07145605 0.05683804]] [[0.04669654 0.0366535 ]]] rmse: 0.0519 ------------------------------------------------------------------ rmse mean: 0.0634 =================================================================== K=32, lr=0.001, num_layers=1, hidden_dim=32, alpha=0.001 seed:0 [[[0.04554864 0.03593597]] [[0.12161386 0.10365847]] [[0.07011291 0.060173 ]] [[0.04688661 0.03701029]]] rmse: 0.0651 ------------------------------------------------------------------ seed:1 [[[0.04594024 0.03665667]] [[0.08997078 0.07923085]] [[0.09708263 0.08697563]] [[0.04887869 0.03974299]]] rmse: 0.0656 ------------------------------------------------------------------ seed:2 [[[0.03638399 0.02923445]] [[0.07564936 0.06162125]] [[0.07140976 0.05680817]] [[0.04621605 0.03621913]]] rmse: 0.0517 ------------------------------------------------------------------ rmse mean: 0.0608 =================================================================== K=32, lr=0.001, num_layers=1, hidden_dim=32, alpha=0.01 seed:0 [[[0.04223907 0.03340813]] [[0.10738603 0.09893605]] [[0.08217443 0.07400801]] [[0.04651504 0.03676897]]] rmse: 0.0652 ------------------------------------------------------------------ seed:1 [[[0.03291497 0.02527845]] [[0.10383185 0.09004621]] [[0.11038155 0.10257677]] [[0.04115237 0.0337789 ]]] rmse: 0.0675 ------------------------------------------------------------------ seed:2 [[[0.03542274 0.02847139]] [[0.11433443 0.1065439 ]] [[0.09524695 0.08574066]] [[0.03876551 0.03173158]]] rmse: 0.0670 ------------------------------------------------------------------ rmse mean: 0.0666 =================================================================== K=32, lr=0.001, num_layers=1, hidden_dim=64, alpha=0.0 seed:0 [[[0.03742823 0.02952666]] [[0.11936543 0.10398346]] [[0.10989166 0.10414545]] [[0.04396324 0.03461398]]] rmse: 0.0729 ------------------------------------------------------------------ seed:1 [[[0.05185715 0.04032686]] [[0.11698319 0.09776901]] [[0.10691801 0.10074995]] [[0.04546743 0.03759608]]] rmse: 0.0747 ------------------------------------------------------------------ seed:2 [[[0.040619 0.03130755]] [[0.1243353 0.10200462]] [[0.06994017 0.05922791]] [[0.05660631 0.04438192]]] rmse: 0.0661 ------------------------------------------------------------------ rmse mean: 0.0712 =================================================================== K=32, lr=0.001, num_layers=1, hidden_dim=64, alpha=0.0001 seed:0 [[[0.03739334 0.02950251]] [[0.11936193 0.10398276]] [[0.10993995 0.10420186]] [[0.04395174 0.03460219]]] rmse: 0.0729 ------------------------------------------------------------------ seed:1 [[[0.05185325 0.04032176]] [[0.11698144 0.09776863]] [[0.10690875 0.10073973]] [[0.04553839 0.03766151]]] rmse: 0.0747 ------------------------------------------------------------------ seed:2 [[[0.04058901 0.03128051]] [[0.1243312 0.10201351]] [[0.06995175 0.05923846]] [[0.05659813 0.04437692]]] rmse: 0.0660 ------------------------------------------------------------------ rmse mean: 0.0712 =================================================================== K=32, lr=0.001, num_layers=1, hidden_dim=64, alpha=0.001 seed:0 [[[0.03708471 0.02930752]] [[0.11933151 0.10397979]] [[0.10973379 0.10402041]] [[0.04423679 0.03518833]]] rmse: 0.0729 ------------------------------------------------------------------ seed:1 [[[0.0518193 0.04027219]] [[0.11320256 0.09741248]] [[0.08609381 0.07913892]] [[0.04642051 0.0350769 ]]] rmse: 0.0687 ------------------------------------------------------------------ seed:2 [[[0.04029825 0.03107592]] [[0.11371896 0.10048914]] [[0.09249091 0.08245132]] [[0.04562972 0.03495162]]] rmse: 0.0676 ------------------------------------------------------------------ rmse mean: 0.0697 =================================================================== K=32, lr=0.001, num_layers=1, hidden_dim=64, alpha=0.01 seed:0 [[[0.03470407 0.02779053]] [[0.11327435 0.09780644]] [[0.07100567 0.0612421 ]] [[0.04637073 0.03960176]]] rmse: 0.0615 ------------------------------------------------------------------ seed:1 [[[0.03697352 0.03122633]] [[0.14585215 0.11217251]] [[0.1252756 0.11709207]] [[0.04192058 0.03403158]]] rmse: 0.0806 ------------------------------------------------------------------ seed:2 [[[0.04170508 0.03177374]] [[0.11774204 0.10696926]] [[0.09750139 0.09022693]] [[0.0445959 0.03549327]]] rmse: 0.0708 ------------------------------------------------------------------ rmse mean: 0.0709 =================================================================== K=32, lr=0.001, num_layers=1, hidden_dim=128, alpha=0.0 seed:0 [[[0.04275174 0.03442493]] [[0.11912285 0.10336419]] [[0.13525258 0.12850554]] [[0.04716561 0.03712383]]] rmse: 0.0810 ------------------------------------------------------------------ seed:1 [[[0.04245992 0.03347361]] [[0.11540291 0.09524468]] [[0.04762076 0.03768326]] [[0.05297016 0.04306307]]] rmse: 0.0585 ------------------------------------------------------------------ seed:2 [[[0.0614791 0.04948514]] [[0.12357736 0.10253127]] [[0.06617802 0.05783783]] [[0.04537448 0.03705549]]] rmse: 0.0679 ------------------------------------------------------------------ rmse mean: 0.0691 =================================================================== K=32, lr=0.001, num_layers=1, hidden_dim=128, alpha=0.0001 seed:0 [[[0.04274023 0.034417 ]] [[0.11912811 0.1033693 ]] [[0.13524625 0.12850202]] [[0.04715235 0.03711698]]] rmse: 0.0810 ------------------------------------------------------------------ seed:1 [[[0.04244307 0.03346123]] [[0.11538406 0.09523536]] [[0.04760838 0.03767179]] [[0.05295143 0.04305104]]] rmse: 0.0585 ------------------------------------------------------------------ seed:2 [[[0.06144411 0.04945928]] [[0.12358327 0.10253775]] [[0.06616867 0.05782782]] [[0.04535468 0.03703955]]] rmse: 0.0679 ------------------------------------------------------------------ rmse mean: 0.0691 =================================================================== K=32, lr=0.001, num_layers=1, hidden_dim=128, alpha=0.001 seed:0 [[[0.04263991 0.03436871]] [[0.12277257 0.10810781]] [[0.11637028 0.11195551]] [[0.04404631 0.03316686]]] rmse: 0.0767 ------------------------------------------------------------------ seed:1 [[[0.04231049 0.03336347]] [[0.11513697 0.09508631]] [[0.0475284 0.03759564]] [[0.04587954 0.03871815]]] rmse: 0.0570 ------------------------------------------------------------------ seed:2 [[[0.04286062 0.03293722]] [[0.10647794 0.08585205]] [[0.11832847 0.11000455]] [[0.03994306 0.0314803 ]]] rmse: 0.0710 ------------------------------------------------------------------ rmse mean: 0.0682 =================================================================== K=32, lr=0.001, num_layers=1, hidden_dim=128, alpha=0.01 seed:0 [[[0.04202543 0.03420687]] [[0.1204838 0.11093772]] [[0.08286342 0.07029896]] [[0.04527937 0.03824861]]] rmse: 0.0680 ------------------------------------------------------------------ seed:1 [[[0.04223601 0.03332886]] [[0.10395203 0.08838228]] [[0.09515492 0.08540869]] [[0.04413264 0.03420275]]] rmse: 0.0658 ------------------------------------------------------------------ seed:2 [[[0.039294 0.03206775]] [[0.11959298 0.11298439]] [[0.10930978 0.10549036]] [[0.04492705 0.03572013]]] rmse: 0.0749 ------------------------------------------------------------------ rmse mean: 0.0696 =================================================================== K=32, lr=0.001, num_layers=1, hidden_dim=256, alpha=0.0 seed:0 [[[0.04392244 0.03388444]] [[0.11555776 0.09968722]] [[0.08121519 0.07171135]] [[0.0478491 0.03941749]]] rmse: 0.0667 ------------------------------------------------------------------ seed:1 [[[0.03632576 0.02952351]] [[0.09115371 0.07463958]] [[0.12061327 0.10779113]] [[0.04614587 0.03640785]]] rmse: 0.0678 ------------------------------------------------------------------ seed:2 [[[0.04439992 0.03419793]] [[0.09699361 0.08171725]] [[0.08379164 0.07628489]] [[0.04277334 0.03504519]]] rmse: 0.0619 ------------------------------------------------------------------ rmse mean: 0.0655 =================================================================== K=32, lr=0.001, num_layers=1, hidden_dim=256, alpha=0.0001 seed:0 [[[0.04392986 0.03389252]] [[0.11555715 0.09969052]] [[0.08118385 0.0716885 ]] [[0.04784846 0.03941675]]] rmse: 0.0667 ------------------------------------------------------------------ seed:1 [[[0.03627323 0.02946598]] [[0.091169 0.07465001]] [[0.12062542 0.10780924]] [[0.0406229 0.03324772]]] rmse: 0.0667 ------------------------------------------------------------------ seed:2 [[[0.04434785 0.03415257]] [[0.09697892 0.0817059 ]] [[0.08378142 0.07627278]] [[0.04278048 0.03504808]]] rmse: 0.0619 ------------------------------------------------------------------ rmse mean: 0.0651 =================================================================== K=32, lr=0.001, num_layers=1, hidden_dim=256, alpha=0.001 seed:0 [[[0.04393345 0.03390052]] [[0.11555139 0.09972215]] [[0.08091305 0.07148291]] [[0.0397319 0.03323595]]] rmse: 0.0648 ------------------------------------------------------------------ seed:1 [[[0.0362411 0.02943909]] [[0.09148902 0.07491788]] [[0.10773217 0.10200964]] [[0.04812781 0.0350708 ]]] rmse: 0.0656 ------------------------------------------------------------------ seed:2 [[[0.04385662 0.03375615]] [[0.11333948 0.10201059]] [[0.10521249 0.09780741]] [[0.04651443 0.03659941]]] rmse: 0.0724 ------------------------------------------------------------------ rmse mean: 0.0676 =================================================================== K=32, lr=0.001, num_layers=1, hidden_dim=256, alpha=0.01 seed:0 [[[0.04316891 0.03328673]] [[0.11520323 0.09957213]] [[0.07452394 0.06570975]] [[0.04258815 0.03594487]]] rmse: 0.0637 ------------------------------------------------------------------ seed:1 [[[0.03772023 0.02993249]] [[0.12321904 0.11263288]] [[0.11254505 0.10815798]] [[0.03928256 0.03245259]]] rmse: 0.0745 ------------------------------------------------------------------ seed:2 [[[0.03839284 0.02926316]] [[0.10913429 0.09633193]] [[0.11179143 0.10815876]] [[0.04068726 0.033327 ]]] rmse: 0.0709 ------------------------------------------------------------------ rmse mean: 0.0697 =================================================================== K=32, lr=0.001, num_layers=2, hidden_dim=16, alpha=0.0 seed:0 [[[0.0371999 0.02994731]] [[0.10996634 0.09337514]] [[0.06469451 0.05353472]] [[0.04139463 0.03535929]]] rmse: 0.0582 ------------------------------------------------------------------ seed:1 [[[0.03921009 0.03051472]] [[0.11495768 0.0950727 ]] [[0.06608422 0.05242411]] [[0.0356121 0.02906253]]] rmse: 0.0579 ------------------------------------------------------------------ seed:2 [[[0.04340106 0.03339075]] [[0.15675635 0.11551828]] [[0.08593269 0.07074295]] [[0.04329851 0.0354964 ]]] rmse: 0.0731 ------------------------------------------------------------------ rmse mean: 0.0630 =================================================================== K=32, lr=0.001, num_layers=2, hidden_dim=16, alpha=0.0001 seed:0 [[[0.03718707 0.02993729]] [[0.10997087 0.0933774 ]] [[0.06468839 0.0535304 ]] [[0.04138777 0.03536831]]] rmse: 0.0582 ------------------------------------------------------------------ seed:1 [[[0.03921744 0.03052047]] [[0.11495794 0.09507721]] [[0.06607458 0.05241232]] [[0.03561134 0.02906403]]] rmse: 0.0579 ------------------------------------------------------------------ seed:2 [[[0.04331674 0.03335215]] [[0.15659971 0.11537206]] [[0.08592953 0.07074018]] [[0.04328149 0.03548341]]] rmse: 0.0730 ------------------------------------------------------------------ rmse mean: 0.0630 =================================================================== K=32, lr=0.001, num_layers=2, hidden_dim=16, alpha=0.001 seed:0 [[[0.03711815 0.0299027 ]] [[0.10976107 0.09504428]] [[0.11606413 0.10971523]] [[0.03971326 0.03297168]]] rmse: 0.0713 ------------------------------------------------------------------ seed:1 [[[0.03922296 0.0305155 ]] [[0.11489882 0.09505593]] [[0.1244948 0.11958429]] [[0.05014966 0.04299458]]] rmse: 0.0771 ------------------------------------------------------------------ seed:2 [[[0.04299065 0.03311972]] [[0.07957361 0.0596558 ]] [[0.11334924 0.10872377]] [[0.05124565 0.04293375]]] rmse: 0.0664 ------------------------------------------------------------------ rmse mean: 0.0716 =================================================================== K=32, lr=0.001, num_layers=2, hidden_dim=16, alpha=0.01 seed:0 [[[0.03717164 0.03015291]] [[0.11712299 0.10509955]] [[0.09554941 0.08881328]] [[0.03614488 0.03072916]]] rmse: 0.0676 ------------------------------------------------------------------ seed:1 [[[0.03562903 0.02876583]] [[0.1180276 0.09290833]] [[0.10259434 0.09819089]] [[0.04345561 0.03547155]]] rmse: 0.0694 ------------------------------------------------------------------ seed:2 [[[0.04126492 0.03341621]] [[0.11309984 0.09705169]] [[0.10771336 0.10361385]] [[0.04287911 0.03586538]]] rmse: 0.0719 ------------------------------------------------------------------ rmse mean: 0.0696 =================================================================== K=32, lr=0.001, num_layers=2, hidden_dim=32, alpha=0.0 seed:0 [[[0.04503032 0.03471804]] [[0.10731659 0.09345832]] [[0.11006449 0.10093009]] [[0.0425152 0.03328644]]] rmse: 0.0709 ------------------------------------------------------------------ seed:1 [[[0.03954663 0.0305291 ]] [[0.11943604 0.1033133 ]] [[0.11493884 0.1104656 ]] [[0.04262972 0.0354547 ]]] rmse: 0.0745 ------------------------------------------------------------------ seed:2 [[[0.03515027 0.02923332]] [[0.09680419 0.07416518]] [[0.09925313 0.09580443]] [[0.03866795 0.03223416]]] rmse: 0.0627 ------------------------------------------------------------------ rmse mean: 0.0694 =================================================================== K=32, lr=0.001, num_layers=2, hidden_dim=32, alpha=0.0001 seed:0 [[[0.04499995 0.03469739]] [[0.10731574 0.09346117]] [[0.10999211 0.10085715]] [[0.04253748 0.03332675]]] rmse: 0.0709 ------------------------------------------------------------------ seed:1 [[[0.03961835 0.03065077]] [[0.11941331 0.10330358]] [[0.11495253 0.11049298]] [[0.04263001 0.0354542 ]]] rmse: 0.0746 ------------------------------------------------------------------ seed:2 [[[0.03511863 0.02920457]] [[0.0967846 0.0741509 ]] [[0.09924886 0.09580048]] [[0.03864468 0.03221391]]] rmse: 0.0626 ------------------------------------------------------------------ rmse mean: 0.0694 =================================================================== K=32, lr=0.001, num_layers=2, hidden_dim=32, alpha=0.001 seed:0 [[[0.04464555 0.03443012]] [[0.10727724 0.09344472]] [[0.10946231 0.10032719]] [[0.04263672 0.03348965]]] rmse: 0.0707 ------------------------------------------------------------------ seed:1 [[[0.03997515 0.03131263]] [[0.11931749 0.10376883]] [[0.12189241 0.11646887]] [[0.04368392 0.03434693]]] rmse: 0.0763 ------------------------------------------------------------------ seed:2 [[[0.03485283 0.02895107]] [[0.10900374 0.08768724]] [[0.11449056 0.1075903 ]] [[0.03948648 0.03165446]]] rmse: 0.0692 ------------------------------------------------------------------ rmse mean: 0.0721 =================================================================== K=32, lr=0.001, num_layers=2, hidden_dim=32, alpha=0.01 seed:0 [[[0.04298679 0.03322122]] [[0.11907899 0.10587912]] [[0.07600555 0.06910985]] [[0.04036146 0.03352424]]] rmse: 0.0650 ------------------------------------------------------------------ seed:1 [[[0.03716187 0.0288596 ]] [[0.11036925 0.09227519]] [[0.0913759 0.08134566]] [[0.04027071 0.03046048]]] rmse: 0.0640 ------------------------------------------------------------------ seed:2 [[[0.0343909 0.02804114]] [[0.10965439 0.08597724]] [[0.08086464 0.07194454]] [[0.03850055 0.03154053]]] rmse: 0.0601 ------------------------------------------------------------------ rmse mean: 0.0630 =================================================================== K=32, lr=0.001, num_layers=2, hidden_dim=64, alpha=0.0 seed:0 [[[0.03996964 0.03191566]] [[0.0994734 0.08852261]] [[0.11506889 0.11143796]] [[0.05103985 0.04091364]]] rmse: 0.0723 ------------------------------------------------------------------ seed:1 [[[0.03852193 0.02972532]] [[0.15183392 0.1195002 ]] [[0.11728622 0.11186556]] [[0.04849572 0.03993602]]] rmse: 0.0821 ------------------------------------------------------------------ seed:2 [[[0.03640538 0.0279816 ]] [[0.12187751 0.10513382]] [[0.11812587 0.11486174]] [[0.04898875 0.03817142]]] rmse: 0.0764 ------------------------------------------------------------------ rmse mean: 0.0770 =================================================================== K=32, lr=0.001, num_layers=2, hidden_dim=64, alpha=0.0001 seed:0 [[[0.039926 0.0318841 ]] [[0.09949837 0.08855462]] [[0.11506509 0.11143462]] [[0.05103991 0.04091291]]] rmse: 0.0723 ------------------------------------------------------------------ seed:1 [[[0.03850745 0.02971342]] [[0.1518657 0.11952406]] [[0.1172862 0.11186523]] [[0.04849379 0.03993553]]] rmse: 0.0821 ------------------------------------------------------------------ seed:2 [[[0.0363536 0.02794321]] [[0.12186638 0.10524159]] [[0.11811774 0.11485481]] [[0.04899477 0.03816944]]] rmse: 0.0764 ------------------------------------------------------------------ rmse mean: 0.0770 =================================================================== K=32, lr=0.001, num_layers=2, hidden_dim=64, alpha=0.001 seed:0 [[[0.03962301 0.03163372]] [[0.09966919 0.08882195]] [[0.1150509 0.111423 ]] [[0.04247889 0.03380708]]] rmse: 0.0703 ------------------------------------------------------------------ seed:1 [[[0.03841993 0.02963395]] [[0.11362642 0.08616252]] [[0.10632248 0.09942426]] [[0.0410761 0.0340254 ]]] rmse: 0.0686 ------------------------------------------------------------------ seed:2 [[[0.03624854 0.02791528]] [[0.122246 0.10657304]] [[0.11805494 0.11480208]] [[0.03932236 0.03076104]]] rmse: 0.0745 ------------------------------------------------------------------ rmse mean: 0.0711 =================================================================== K=32, lr=0.001, num_layers=2, hidden_dim=64, alpha=0.01 seed:0 [[[0.03793939 0.03034168]] [[0.10524649 0.09534049]] [[0.09331254 0.08505204]] [[0.03980616 0.03266011]]] rmse: 0.0650 ------------------------------------------------------------------ seed:1 [[[0.03751336 0.02890879]] [[0.11531985 0.08779229]] [[0.08295466 0.07493306]] [[0.04241277 0.0338197 ]]] rmse: 0.0630 ------------------------------------------------------------------ seed:2 [[[0.03399299 0.02644241]] [[0.11392244 0.09217531]] [[0.08084483 0.06951397]] [[0.04197593 0.03508919]]] rmse: 0.0617 ------------------------------------------------------------------ rmse mean: 0.0632 =================================================================== K=32, lr=0.001, num_layers=2, hidden_dim=128, alpha=0.0 seed:0 [[[0.04702132 0.03850416]] [[0.11185781 0.08947213]] [[0.09949038 0.09440301]] [[0.03990603 0.02976829]]] rmse: 0.0688 ------------------------------------------------------------------ seed:1 [[[0.03564493 0.02706585]] [[0.11407401 0.09444429]] [[0.08619559 0.08063003]] [[0.04483439 0.03571379]]] rmse: 0.0648 ------------------------------------------------------------------ seed:2 [[[0.0514234 0.04239019]] [[0.11814312 0.09842255]] [[0.11572962 0.10992375]] [[0.04124922 0.03353626]]] rmse: 0.0764 ------------------------------------------------------------------ rmse mean: 0.0700 =================================================================== K=32, lr=0.001, num_layers=2, hidden_dim=128, alpha=0.0001 seed:0 [[[0.04699671 0.03848409]] [[0.11186237 0.08948018]] [[0.09935112 0.0942893 ]] [[0.03990346 0.02976473]]] rmse: 0.0688 ------------------------------------------------------------------ seed:1 [[[0.03564262 0.02706316]] [[0.11405522 0.09443746]] [[0.08616028 0.08058984]] [[0.04483255 0.03571346]]] rmse: 0.0648 ------------------------------------------------------------------ seed:2 [[[0.05133117 0.04232284]] [[0.11812058 0.09840973]] [[0.1157265 0.10992562]] [[0.04123921 0.03352935]]] rmse: 0.0763 ------------------------------------------------------------------ rmse mean: 0.0700 =================================================================== K=32, lr=0.001, num_layers=2, hidden_dim=128, alpha=0.001 seed:0 [[[0.04677394 0.03831042]] [[0.11189096 0.08952264]] [[0.09797931 0.09311604]] [[0.0399075 0.0297553 ]]] rmse: 0.0684 ------------------------------------------------------------------ seed:1 [[[0.03563485 0.02705462]] [[0.11384532 0.09433679]] [[0.08606827 0.08047502]] [[0.04360872 0.03523694]]] rmse: 0.0645 ------------------------------------------------------------------ seed:2 [[[0.05071782 0.04173304]] [[0.11787005 0.09821466]] [[0.11563798 0.10984789]] [[0.04138678 0.03387195]]] rmse: 0.0762 ------------------------------------------------------------------ rmse mean: 0.0697 =================================================================== K=32, lr=0.001, num_layers=2, hidden_dim=128, alpha=0.01 seed:0 [[[0.03516846 0.02705968]] [[0.10201129 0.0871442 ]] [[0.09823614 0.09178468]] [[0.04282759 0.03530907]]] rmse: 0.0649 ------------------------------------------------------------------ seed:1 [[[0.03550254 0.02695424]] [[0.10626835 0.09151899]] [[0.1015357 0.09572043]] [[0.04236686 0.03554617]]] rmse: 0.0669 ------------------------------------------------------------------ seed:2 [[[0.03882406 0.03020892]] [[0.11632997 0.09069524]] [[0.0829184 0.07766281]] [[0.04260313 0.03539446]]] rmse: 0.0643 ------------------------------------------------------------------ rmse mean: 0.0654 =================================================================== K=32, lr=0.001, num_layers=2, hidden_dim=256, alpha=0.0 seed:0 [[[0.04694678 0.03797604]] [[0.12401611 0.10307461]] [[0.12750906 0.12147446]] [[0.03530465 0.02866163]]] rmse: 0.0781 ------------------------------------------------------------------ seed:1 [[[0.03353204 0.02455835]] [[0.09659823 0.07318685]] [[0.12258948 0.11701728]] [[0.03711632 0.03091765]]] rmse: 0.0669 ------------------------------------------------------------------ seed:2 [[[0.03350129 0.02610846]] [[0.11588303 0.09883727]] [[0.11052213 0.10291927]] [[0.03666428 0.03065772]]] rmse: 0.0694 ------------------------------------------------------------------ rmse mean: 0.0715 =================================================================== K=32, lr=0.001, num_layers=2, hidden_dim=256, alpha=0.0001 seed:0 [[[0.04693682 0.03795764]] [[0.12405132 0.10310003]] [[0.12748928 0.12146508]] [[0.03530375 0.02866105]]] rmse: 0.0781 ------------------------------------------------------------------ seed:1 [[[0.03351889 0.02454945]] [[0.09659437 0.07318425]] [[0.12254874 0.11697016]] [[0.0371141 0.03092556]]] rmse: 0.0669 ------------------------------------------------------------------ seed:2 [[[0.03344404 0.02609324]] [[0.11586344 0.09882706]] [[0.11046244 0.10290114]] [[0.03666444 0.03065437]]] rmse: 0.0694 ------------------------------------------------------------------ rmse mean: 0.0715 =================================================================== K=32, lr=0.001, num_layers=2, hidden_dim=256, alpha=0.001 seed:0 [[[0.04699894 0.03797937]] [[0.12390157 0.10302342]] [[0.12457703 0.11918243]] [[0.03528564 0.02864332]]] rmse: 0.0774 ------------------------------------------------------------------ seed:1 [[[0.0333626 0.02445948]] [[0.10782488 0.08628784]] [[0.11606483 0.11137738]] [[0.03791066 0.02933301]]] rmse: 0.0683 ------------------------------------------------------------------ seed:2 [[[0.03299865 0.02591786]] [[0.11606445 0.10182513]] [[0.10006115 0.0951944 ]] [[0.04125002 0.03395649]]] rmse: 0.0684 ------------------------------------------------------------------ rmse mean: 0.0714 =================================================================== K=32, lr=0.001, num_layers=2, hidden_dim=256, alpha=0.01 seed:0 [[[0.04768585 0.03848191]] [[0.11371139 0.09904019]] [[0.11069012 0.10479081]] [[0.03671066 0.02910287]]] rmse: 0.0725 ------------------------------------------------------------------ seed:1 [[[0.03384914 0.02400242]] [[0.11205937 0.09653928]] [[0.09339408 0.08810264]] [[0.03959396 0.03124186]]] rmse: 0.0648 ------------------------------------------------------------------ seed:2 [[[0.03430952 0.02609465]] [[0.10482396 0.08483894]] [[0.097309 0.0933374 ]] [[0.03878477 0.03171943]]] rmse: 0.0639 ------------------------------------------------------------------ rmse mean: 0.0671 ===================================================================
K=32, lr=0.01, num_layers=1, hidden_dim=16, alpha=0.0 seed:0 [[[0.03332006 0.02263053]] [[0.12380651 0.10273081]] [[0.11556788 0.11351498]] [[0.03801454 0.03076121]]] rmse: 0.0725 ------------------------------------------------------------------ seed:1 [[[0.03318524 0.02420733]] [[0.11345411 0.09730406]] [[0.1172332 0.1132053 ]] [[0.04234513 0.03509978]]] rmse: 0.0720 ------------------------------------------------------------------ seed:2 [[[0.05425386 0.04534778]] [[0.12573686 0.10361135]] [[0.11774773 0.11237631]] [[0.04370081 0.03565472]]] rmse: 0.0798 ------------------------------------------------------------------ rmse mean: 0.0748 =================================================================== K=32, lr=0.01, num_layers=1, hidden_dim=16, alpha=0.0001 seed:0 [[[0.03331939 0.02263009]] [[0.1238064 0.10273074]] [[0.11556853 0.11351543]] [[0.03801452 0.03076131]]] rmse: 0.0725 ------------------------------------------------------------------ seed:1 [[[0.03318574 0.02420792]] [[0.11346419 0.09731589]] [[0.117233 0.11320516]] [[0.04234466 0.03509943]]] rmse: 0.0720 ------------------------------------------------------------------ seed:2 [[[0.05425063 0.04534488]] [[0.12573665 0.10361118]] [[0.11774759 0.11237641]] [[0.04370127 0.03565502]]] rmse: 0.0798 ------------------------------------------------------------------ rmse mean: 0.0748 =================================================================== K=32, lr=0.01, num_layers=1, hidden_dim=16, alpha=0.001 seed:0 [[[0.03331291 0.02262567]] [[0.12379668 0.10272525]] [[0.11557478 0.11351999]] [[0.03801468 0.03076091]]] rmse: 0.0725 ------------------------------------------------------------------ seed:1 [[[0.03318283 0.02420497]] [[0.11341141 0.09730108]] [[0.11723381 0.11320544]] [[0.04234223 0.03509741]]] rmse: 0.0720 ------------------------------------------------------------------ seed:2 [[[0.05424673 0.04534183]] [[0.12573572 0.10361038]] [[0.11774478 0.11237482]] [[0.04370391 0.03565574]]] rmse: 0.0798 ------------------------------------------------------------------ rmse mean: 0.0748 =================================================================== K=32, lr=0.01, num_layers=1, hidden_dim=16, alpha=0.01 seed:0 [[[0.03324825 0.02257762]] [[0.12372559 0.10268325]] [[0.11564107 0.11356987]] [[0.03802067 0.03076366]]] rmse: 0.0725 ------------------------------------------------------------------ seed:1 [[[0.03316028 0.02418323]] [[0.11349127 0.09734017]] [[0.11723936 0.11321065]] [[0.04228431 0.03505017]]] rmse: 0.0720 ------------------------------------------------------------------ seed:2 [[[0.05417176 0.04528237]] [[0.12574163 0.10361218]] [[0.11772409 0.11236707]] [[0.04368204 0.03561278]]] rmse: 0.0798 ------------------------------------------------------------------ rmse mean: 0.0748 =================================================================== K=32, lr=0.01, num_layers=1, hidden_dim=32, alpha=0.0 seed:0 [[[0.03534208 0.02565486]] [[0.15861877 0.14039678]] [[0.12018842 0.11527515]] [[0.04097281 0.03402642]]] rmse: 0.0838 ------------------------------------------------------------------ seed:1 [[[0.02915161 0.02075872]] [[0.12408666 0.10263188]] [[0.11679793 0.11194924]] [[0.0385657 0.03097937]]] rmse: 0.0719 ------------------------------------------------------------------ seed:2 [[[0.03037309 0.02041467]] [[0.12040843 0.09969519]] [[0.11235758 0.11004776]] [[0.03443198 0.02777476]]] rmse: 0.0694 ------------------------------------------------------------------ rmse mean: 0.0750 =================================================================== K=32, lr=0.01, num_layers=1, hidden_dim=32, alpha=0.0001 seed:0 [[[0.03534114 0.02565399]] [[0.04737773 0.0401658 ]] [[0.1164617 0.11420325]] [[0.03440668 0.02768921]]] rmse: 0.0552 ------------------------------------------------------------------ seed:1 [[[0.02915036 0.02075788]] [[0.12408771 0.10263325]] [[0.11679755 0.11194897]] [[0.03856534 0.03098106]]] rmse: 0.0719 ------------------------------------------------------------------ seed:2 [[[0.03037215 0.0204149 ]] [[0.12040756 0.09969449]] [[0.11235811 0.1100486 ]] [[0.03443208 0.02777481]]] rmse: 0.0694 ------------------------------------------------------------------ rmse mean: 0.0655 =================================================================== K=32, lr=0.01, num_layers=1, hidden_dim=32, alpha=0.001 seed:0 [[[0.03533286 0.02564638]] [[0.05392549 0.0431496 ]] [[0.11667916 0.11425673]] [[0.0405618 0.03373372]]] rmse: 0.0579 ------------------------------------------------------------------ seed:1 [[[0.02915047 0.02075822]] [[0.12408925 0.10263338]] [[0.11679648 0.11194916]] [[0.03855624 0.0309719 ]]] rmse: 0.0719 ------------------------------------------------------------------ seed:2 [[[0.03036534 0.02041692]] [[0.12041019 0.09969841]] [[0.11236211 0.11005279]] [[0.03443351 0.02777483]]] rmse: 0.0694 ------------------------------------------------------------------ rmse mean: 0.0664 =================================================================== K=32, lr=0.01, num_layers=1, hidden_dim=32, alpha=0.01 seed:0 [[[0.03526052 0.02558 ]] [[0.12046383 0.09967906]] [[0.11715429 0.11379959]] [[0.03981126 0.03304005]]] rmse: 0.0731 ------------------------------------------------------------------ seed:1 [[[0.02912743 0.0207504 ]] [[0.12401554 0.10259403]] [[0.11677415 0.11194655]] [[0.03845251 0.03084138]]] rmse: 0.0718 ------------------------------------------------------------------ seed:2 [[[0.03187646 0.02183189]] [[0.1229545 0.10203114]] [[0.11832476 0.11318108]] [[0.03634804 0.02994838]]] rmse: 0.0721 ------------------------------------------------------------------ rmse mean: 0.0723 =================================================================== K=32, lr=0.01, num_layers=1, hidden_dim=64, alpha=0.0 seed:0 [[[0.0294286 0.02190402]] [[0.12400354 0.10165532]] [[0.12272408 0.11654356]] [[0.03685075 0.02966131]]] rmse: 0.0728 ------------------------------------------------------------------ seed:1 [[[0.0405919 0.02921619]] [[0.12502532 0.10312009]] [[0.1181711 0.11442086]] [[0.03770066 0.03023736]]] rmse: 0.0748 ------------------------------------------------------------------ seed:2 [[[0.03811447 0.02660118]] [[0.121238 0.10114715]] [[0.12049666 0.11556313]] [[0.03558346 0.02766479]]] rmse: 0.0733 ------------------------------------------------------------------ rmse mean: 0.0737 =================================================================== K=32, lr=0.01, num_layers=1, hidden_dim=64, alpha=0.0001 seed:0 [[[0.02942841 0.02190383]] [[0.12399681 0.1016537 ]] [[0.12272435 0.11654429]] [[0.05459235 0.04320117]]] rmse: 0.0768 ------------------------------------------------------------------ seed:1 [[[0.0405941 0.02922082]] [[0.12502451 0.10311945]] [[0.11817093 0.11442053]] [[0.03769981 0.03023671]]] rmse: 0.0748 ------------------------------------------------------------------ seed:2 [[[0.03811246 0.02659883]] [[0.12123753 0.10114672]] [[0.12049792 0.1155646 ]] [[0.03558332 0.0276647 ]]] rmse: 0.0733 ------------------------------------------------------------------ rmse mean: 0.0750 =================================================================== K=32, lr=0.01, num_layers=1, hidden_dim=64, alpha=0.001 seed:0 [[[0.02941926 0.02190012]] [[0.12392279 0.10164137]] [[0.1173564 0.11441444]] [[0.04157084 0.03465116]]] rmse: 0.0731 ------------------------------------------------------------------ seed:1 [[[0.04060198 0.02926378]] [[0.12505339 0.10313715]] [[0.11813234 0.11440112]] [[0.03770903 0.03024462]]] rmse: 0.0748 ------------------------------------------------------------------ seed:2 [[[0.03810721 0.02659445]] [[0.12124065 0.10114845]] [[0.1204958 0.11556406]] [[0.03558547 0.02766631]]] rmse: 0.0733 ------------------------------------------------------------------ rmse mean: 0.0737 =================================================================== K=32, lr=0.01, num_layers=1, hidden_dim=64, alpha=0.01 seed:0 [[[0.02946129 0.02194745]] [[0.12418536 0.10191929]] [[0.12275244 0.11654856]] [[0.08406701 0.0754165 ]]] rmse: 0.0845 ------------------------------------------------------------------ seed:1 [[[0.02799332 0.02191107]] [[0.1169079 0.10129464]] [[0.11858284 0.11370497]] [[0.04400819 0.03615326]]] rmse: 0.0726 ------------------------------------------------------------------ seed:2 [[[0.03806993 0.02656535]] [[0.12126021 0.10115822]] [[0.12048764 0.1155645 ]] [[0.03560607 0.02768277]]] rmse: 0.0733 ------------------------------------------------------------------ rmse mean: 0.0768 =================================================================== K=32, lr=0.01, num_layers=1, hidden_dim=128, alpha=0.0 seed:0 [[[0.02877828 0.02076705]] [[0.11959501 0.10069795]] [[0.11620682 0.11407502]] [[0.03330108 0.02680102]]] rmse: 0.0700 ------------------------------------------------------------------ seed:1 [[[0.02690477 0.0194655 ]] [[0.12245217 0.10184842]] [[0.11935607 0.11211528]] [[0.03825797 0.02997218]]] rmse: 0.0713 ------------------------------------------------------------------ seed:2 [[[0.0299003 0.02144678]] [[0.0837366 0.06172886]] [[0.10778081 0.10641922]] [[0.04022387 0.03260744]]] rmse: 0.0605 ------------------------------------------------------------------ rmse mean: 0.0673 =================================================================== K=32, lr=0.01, num_layers=1, hidden_dim=128, alpha=0.0001 seed:0 [[[0.02878104 0.02076662]] [[0.11938488 0.1005969 ]] [[0.11621012 0.11407747]] [[0.03330387 0.02680721]]] rmse: 0.0700 ------------------------------------------------------------------ seed:1 [[[0.0269048 0.01946519]] [[0.12245114 0.10184787]] [[0.11934827 0.1121097 ]] [[0.03825643 0.02997117]]] rmse: 0.0713 ------------------------------------------------------------------ seed:2 [[[0.02989827 0.0214451 ]] [[0.10258104 0.08029122]] [[0.10778301 0.10642134]] [[0.04022348 0.03260725]]] rmse: 0.0652 ------------------------------------------------------------------ rmse mean: 0.0688 =================================================================== K=32, lr=0.01, num_layers=1, hidden_dim=128, alpha=0.001 seed:0 [[[0.02877637 0.02076811]] [[0.11987507 0.10081864]] [[0.11622988 0.11409067]] [[0.03332564 0.02682773]]] rmse: 0.0701 ------------------------------------------------------------------ seed:1 [[[0.02691209 0.01947218]] [[0.12244313 0.10184332]] [[0.11935656 0.1121143 ]] [[0.03824477 0.02996104]]] rmse: 0.0713 ------------------------------------------------------------------ seed:2 [[[0.02990001 0.02144575]] [[0.12559582 0.10120567]] [[0.11982053 0.11455728]] [[0.03890149 0.0315395 ]]] rmse: 0.0729 ------------------------------------------------------------------ rmse mean: 0.0714 =================================================================== K=32, lr=0.01, num_layers=1, hidden_dim=128, alpha=0.01 seed:0 [[[0.03147262 0.02313356]] [[0.1497948 0.13285032]] [[0.11912268 0.11471745]] [[0.03645958 0.03019969]]] rmse: 0.0797 ------------------------------------------------------------------ seed:1 [[[0.02690515 0.01946839]] [[0.1224286 0.10183743]] [[0.11937761 0.11211602]] [[0.03823884 0.0299538 ]]] rmse: 0.0713 ------------------------------------------------------------------ seed:2 [[[0.02988816 0.02143382]] [[0.19580527 0.17158456]] [[0.09223147 0.07841167]] [[0.03397858 0.02713959]]] rmse: 0.0813 ------------------------------------------------------------------ rmse mean: 0.0774 =================================================================== K=32, lr=0.01, num_layers=1, hidden_dim=256, alpha=0.0 seed:0 [[[0.02817362 0.02044576]] [[0.1072017 0.08742965]] [[0.10970714 0.10798444]] [[0.03365299 0.02833721]]] rmse: 0.0654 ------------------------------------------------------------------ seed:1 [[[0.05814715 0.05157099]] [[0.11605046 0.09896002]] [[0.11986985 0.11474182]] [[0.03495282 0.03013161]]] rmse: 0.0781 ------------------------------------------------------------------ seed:2 [[[0.02736449 0.01783038]] [[0.11073005 0.09792315]] [[0.1119603 0.11026098]] [[0.03439724 0.02885342]]] rmse: 0.0674 ------------------------------------------------------------------ rmse mean: 0.0703 =================================================================== K=32, lr=0.01, num_layers=1, hidden_dim=256, alpha=0.0001 seed:0 [[[0.02817119 0.02044474]] [[0.06667215 0.04952024]] [[0.09900787 0.09633028]] [[0.03711148 0.02795835]]] rmse: 0.0532 ------------------------------------------------------------------ seed:1 [[[0.05835316 0.05176367]] [[0.11605355 0.0989618 ]] [[0.11984682 0.11473248]] [[0.03495292 0.03013207]]] rmse: 0.0781 ------------------------------------------------------------------ seed:2 [[[0.02736408 0.01783095]] [[0.11064845 0.09793233]] [[0.1119612 0.11026173]] [[0.03439767 0.02885582]]] rmse: 0.0674 ------------------------------------------------------------------ rmse mean: 0.0662 =================================================================== K=32, lr=0.01, num_layers=1, hidden_dim=256, alpha=0.001 seed:0 [[[0.02810226 0.0204325 ]] [[0.0526023 0.03963614]] [[0.10392367 0.10185474]] [[0.03430149 0.02748027]]] rmse: 0.0510 ------------------------------------------------------------------ seed:1 [[[0.04720682 0.04091436]] [[0.11584211 0.09885655]] [[0.11994242 0.11477637]] [[0.03495315 0.03013261]]] rmse: 0.0753 ------------------------------------------------------------------ seed:2 [[[0.02736029 0.01784266]] [[0.11051619 0.09795723]] [[0.11194526 0.11024844]] [[0.03439819 0.02887607]]] rmse: 0.0674 ------------------------------------------------------------------ rmse mean: 0.0646 =================================================================== K=32, lr=0.01, num_layers=1, hidden_dim=256, alpha=0.01 seed:0 [[[0.02820679 0.02054257]] [[0.07553114 0.065873 ]] [[0.1032738 0.10010952]] [[0.03480659 0.02790995]]] rmse: 0.0570 ------------------------------------------------------------------ seed:1 [[[0.03290271 0.02336675]] [[0.11500637 0.09624963]] [[0.04712472 0.03599202]] [[0.0340481 0.02830189]]] rmse: 0.0516 ------------------------------------------------------------------ seed:2 [[[0.02735501 0.01853231]] [[0.11055308 0.09797399]] [[0.11194146 0.11024717]] [[0.03441445 0.02905473]]] rmse: 0.0675 ------------------------------------------------------------------ rmse mean: 0.0587 =================================================================== K=32, lr=0.01, num_layers=2, hidden_dim=16, alpha=0.0 seed:0 [[[0.08009432 0.07079498]] [[0.11452797 0.1000851 ]] [[0.10718856 0.1055583 ]] [[0.03457296 0.0290619 ]]] rmse: 0.0802 ------------------------------------------------------------------ seed:1 [[[0.03306871 0.02311317]] [[0.10969275 0.10160651]] [[0.03469823 0.02087735]] [[0.03612081 0.02967844]]] rmse: 0.0486 ------------------------------------------------------------------ seed:2 [[[0.03866585 0.02531269]] [[0.10420908 0.09114824]] [[0.07375155 0.05973231]] [[0.03653365 0.02979833]]] rmse: 0.0574 ------------------------------------------------------------------ rmse mean: 0.0621 =================================================================== K=32, lr=0.01, num_layers=2, hidden_dim=16, alpha=0.0001 seed:0 [[[0.09134086 0.0802961 ]] [[0.11774151 0.10286675]] [[0.19066122 0.18881654]] [[0.036723 0.02975325]]] rmse: 0.1048 ------------------------------------------------------------------ seed:1 [[[0.12286962 0.10630318]] [[0.11636522 0.09505744]] [[0.0775115 0.07352999]] [[0.10848664 0.09886083]]] rmse: 0.0999 ------------------------------------------------------------------ seed:2 [[[0.03866646 0.02531352]] [[0.10423837 0.09116065]] [[0.07354805 0.0595899 ]] [[0.03653116 0.02979522]]] rmse: 0.0574 ------------------------------------------------------------------ rmse mean: 0.0873 =================================================================== K=32, lr=0.01, num_layers=2, hidden_dim=16, alpha=0.001 seed:0 [[[0.11969209 0.10496086]] [[0.09317127 0.0832276 ]] [[0.16200696 0.16028441]] [[0.03672625 0.02975666]]] rmse: 0.0987 ------------------------------------------------------------------ seed:1 [[[0.05332553 0.04355257]] [[0.12358263 0.10785988]] [[0.07971507 0.07227592]] [[0.05662959 0.04870977]]] rmse: 0.0732 ------------------------------------------------------------------ seed:2 [[[0.03872135 0.02539771]] [[0.10421489 0.09115757]] [[0.07111773 0.05804274]] [[0.03627686 0.02941672]]] rmse: 0.0568 ------------------------------------------------------------------ rmse mean: 0.0762 =================================================================== K=32, lr=0.01, num_layers=2, hidden_dim=16, alpha=0.01 seed:0 [[[0.08060314 0.07648632]] [[0.11074932 0.09553746]] [[0.11465498 0.11241772]] [[0.04083381 0.03239861]]] rmse: 0.0830 ------------------------------------------------------------------ seed:1 [[[0.03181355 0.02205684]] [[0.14670896 0.11902155]] [[0.07694172 0.06443237]] [[0.03269176 0.027233 ]]] rmse: 0.0651 ------------------------------------------------------------------ seed:2 [[[0.03867183 0.02532355]] [[0.10416591 0.09117175]] [[0.0747671 0.06042143]] [[0.03618965 0.02929296]]] rmse: 0.0575 ------------------------------------------------------------------ rmse mean: 0.0685 =================================================================== K=32, lr=0.01, num_layers=2, hidden_dim=32, alpha=0.0 seed:0 [[[0.03530501 0.02862405]] [[0.17350142 0.14402984]] [[0.10189856 0.08602589]] [[0.04118405 0.03251773]]] rmse: 0.0804 ------------------------------------------------------------------ seed:1 [[[0.04994913 0.04018234]] [[0.10821003 0.09531913]] [[0.1241356 0.11550489]] [[0.06668689 0.05906865]]] rmse: 0.0824 ------------------------------------------------------------------ seed:2 [[[0.06707933 0.05903757]] [[0.12683107 0.10402174]] [[0.0881853 0.07325087]] [[0.03629798 0.02865682]]] rmse: 0.0729 ------------------------------------------------------------------ rmse mean: 0.0786 =================================================================== K=32, lr=0.01, num_layers=2, hidden_dim=32, alpha=0.0001 seed:0 [[[0.02866846 0.0198248 ]] [[0.1243967 0.1072927 ]] [[0.1240984 0.1160371 ]] [[0.04291282 0.031288 ]]] rmse: 0.0743 ------------------------------------------------------------------ seed:1 [[[0.04996742 0.04020616]] [[0.09423426 0.07496568]] [[0.12164598 0.11893146]] [[0.04285336 0.034165 ]]] rmse: 0.0721 ------------------------------------------------------------------ seed:2 [[[0.0474362 0.03473137]] [[0.12708144 0.10419173]] [[0.11880305 0.11362185]] [[0.03658476 0.02994041]]] rmse: 0.0765 ------------------------------------------------------------------ rmse mean: 0.0743 =================================================================== K=32, lr=0.01, num_layers=2, hidden_dim=32, alpha=0.001 seed:0 [[[0.09474565 0.08084509]] [[0.09413147 0.07768281]] [[0.12889443 0.12000594]] [[0.03410907 0.02834052]]] rmse: 0.0823 ------------------------------------------------------------------ seed:1 [[[0.05005546 0.04032507]] [[0.11157036 0.09092662]] [[0.09676899 0.09484289]] [[0.03086497 0.02535631]]] rmse: 0.0676 ------------------------------------------------------------------ seed:2 [[[0.03127372 0.02511563]] [[0.12599823 0.10358919]] [[0.05623695 0.04643059]] [[0.08557419 0.07672727]]] rmse: 0.0689 ------------------------------------------------------------------ rmse mean: 0.0729 =================================================================== K=32, lr=0.01, num_layers=2, hidden_dim=32, alpha=0.01 seed:0 [[[0.06170817 0.0556657 ]] [[0.07717894 0.05718762]] [[0.12921986 0.12055432]] [[0.03409909 0.02828678]]] rmse: 0.0705 ------------------------------------------------------------------ seed:1 [[[0.04472121 0.03748534]] [[0.17117065 0.14181999]] [[0.13078629 0.10186154]] [[0.09134565 0.07961371]]] rmse: 0.0999 ------------------------------------------------------------------ seed:2 [[[0.05631064 0.04935311]] [[0.04222782 0.03311883]] [[0.11082014 0.10902827]] [[0.06862355 0.06059818]]] rmse: 0.0663 ------------------------------------------------------------------ rmse mean: 0.0789 =================================================================== K=32, lr=0.01, num_layers=2, hidden_dim=64, alpha=0.0 seed:0 [[[0.04003574 0.03444896]] [[0.0614964 0.05085729]] [[0.12417452 0.11320244]] [[0.04697352 0.03414627]]] rmse: 0.0632 ------------------------------------------------------------------ seed:1 [[[0.03951005 0.02771507]] [[0.13244452 0.10368577]] [[0.14244656 0.138669 ]] [[0.09075773 0.07906258]]] rmse: 0.0943 ------------------------------------------------------------------ seed:2 [[[0.04192694 0.03399796]] [[0.11212541 0.09703513]] [[0.15122043 0.11756265]] [[0.04278536 0.03282891]]] rmse: 0.0787 ------------------------------------------------------------------ rmse mean: 0.0787 =================================================================== K=32, lr=0.01, num_layers=2, hidden_dim=64, alpha=0.0001 seed:0 [[[0.04333896 0.03806139]] [[0.06155912 0.05092739]] [[0.12414403 0.11316832]] [[0.03496756 0.02820717]]] rmse: 0.0618 ------------------------------------------------------------------ seed:1 [[[0.0387259 0.02886737]] [[0.16975712 0.14020933]] [[0.15177016 0.11776419]] [[0.09166225 0.0799113 ]]] rmse: 0.1023 ------------------------------------------------------------------ seed:2 [[[0.02870476 0.02370987]] [[0.11448 0.09480311]] [[0.1098233 0.10783695]] [[0.03879107 0.03180185]]] rmse: 0.0687 ------------------------------------------------------------------ rmse mean: 0.0776 =================================================================== K=32, lr=0.01, num_layers=2, hidden_dim=64, alpha=0.001 seed:0 [[[0.03650796 0.03024951]] [[0.09057039 0.08567305]] [[0.11225922 0.11044945]] [[0.05711131 0.04022641]]] rmse: 0.0704 ------------------------------------------------------------------ seed:1 [[[0.06736514 0.0575497 ]] [[0.115891 0.09750134]] [[0.1517536 0.11778703]] [[0.04916468 0.03446364]]] rmse: 0.0864 ------------------------------------------------------------------ seed:2 [[[0.02738612 0.02189115]] [[0.17405096 0.14464659]] [[0.15279608 0.11804265]] [[0.04097965 0.03497726]]] rmse: 0.0893 ------------------------------------------------------------------ rmse mean: 0.0821 =================================================================== K=32, lr=0.01, num_layers=2, hidden_dim=64, alpha=0.01 seed:0 [[[0.02834214 0.02101403]] [[0.07479319 0.05992717]] [[0.08780156 0.0854498 ]] [[0.09026229 0.07860035]]] rmse: 0.0658 ------------------------------------------------------------------ seed:1 [[[0.06612396 0.06215327]] [[0.25720677 0.21634269]] [[0.04922816 0.04215055]] [[0.11059687 0.10135721]]] rmse: 0.1131 ------------------------------------------------------------------ seed:2 [[[0.05639933 0.04710979]] [[0.09822803 0.07680245]] [[0.03382255 0.02136216]] [[0.05504658 0.04915212]]] rmse: 0.0547 ------------------------------------------------------------------ rmse mean: 0.0779 =================================================================== K=32, lr=0.01, num_layers=2, hidden_dim=128, alpha=0.0 seed:0 [[[0.03888424 0.02889008]] [[0.0771687 0.06780492]] [[0.15228963 0.11792239]] [[0.08919584 0.0775648 ]]] rmse: 0.0812 ------------------------------------------------------------------ seed:1 [[[0.12820633 0.11107891]] [[0.17253452 0.14305571]] [[0.14452199 0.11155749]] [[0.09155542 0.07981485]]] rmse: 0.1228 ------------------------------------------------------------------ seed:2 [[[0.36424027 0.33847252]] [[0.17374214 0.14431627]] [[0.15258467 0.1180226 ]] [[0.03756397 0.03018649]]] rmse: 0.1699 ------------------------------------------------------------------ rmse mean: 0.1246 =================================================================== K=32, lr=0.01, num_layers=2, hidden_dim=128, alpha=0.0001 seed:0 [[[0.02454131 0.01661926]] [[0.1653425 0.13659318]] [[0.15245204 0.11795057]] [[0.09159487 0.07984776]]] rmse: 0.0981 ------------------------------------------------------------------ seed:1 [[[0.12756711 0.11055022]] [[0.17253319 0.1430543 ]] [[0.14351693 0.1107669 ]] [[0.09162938 0.07988395]]] rmse: 0.1224 ------------------------------------------------------------------ seed:2 [[[0.15465344 0.13401143]] [[0.17374919 0.14432283]] [[0.03565775 0.02664563]] [[0.09073911 0.07900813]]] rmse: 0.1048 ------------------------------------------------------------------ rmse mean: 0.1085 =================================================================== K=32, lr=0.01, num_layers=2, hidden_dim=128, alpha=0.001 seed:0 [[[0.03117419 0.02382355]] [[0.17410449 0.14469369]] [[0.08741619 0.07777162]] [[0.07438506 0.06364761]]] rmse: 0.0846 ------------------------------------------------------------------ seed:1 [[[0.12980129 0.11230797]] [[0.17253696 0.14305821]] [[0.14440798 0.11146815]] [[0.09159023 0.07984784]]] rmse: 0.1231 ------------------------------------------------------------------ seed:2 [[[0.13515087 0.11657122]] [[0.17372428 0.14429963]] [[0.15164693 0.11777707]] [[0.08653965 0.07501115]]] rmse: 0.1251 ------------------------------------------------------------------ rmse mean: 0.1109 =================================================================== K=32, lr=0.01, num_layers=2, hidden_dim=128, alpha=0.01 seed:0 [[[0.04006864 0.03071478]] [[0.17159768 0.14211101]] [[0.12504466 0.09786275]] [[0.08904637 0.07749885]]] rmse: 0.0967 ------------------------------------------------------------------ seed:1 [[[0.1239307 0.10753609]] [[0.17255341 0.14307481]] [[0.1445406 0.11157212]] [[0.83478375 0.82997551]]] rmse: 0.3085 ------------------------------------------------------------------ seed:2 [[[0.13316015 0.11498187]] [[0.17371483 0.14429084]] [[0.1413848 0.11628676]] [[0.08820611 0.076591 ]]] rmse: 0.1236 ------------------------------------------------------------------ rmse mean: 0.1763 =================================================================== K=32, lr=0.01, num_layers=2, hidden_dim=256, alpha=0.0 seed:0 [[[0.13492878 0.11650224]] [[1.12318337 1.11368448]] [[0.15259744 0.1180253 ]] [[0.24489741 0.22875491]]] rmse: 0.4041 ------------------------------------------------------------------ seed:1 [[[0.13532018 0.11680274]] [[0.17430437 0.14489641]] [[0.07441481 0.06608785]] [[0.09162731 0.079879 ]]] rmse: 0.1104 ------------------------------------------------------------------ seed:2 [[[0.13538611 0.11685679]] [[0.29826643 0.26565148]] [[0.15252598 0.11800909]] [[0.09138393 0.07965243]]] rmse: 0.1572 ------------------------------------------------------------------ rmse mean: 0.2239 =================================================================== K=32, lr=0.01, num_layers=2, hidden_dim=256, alpha=0.0001 seed:0 [[[0.13536913 0.11685137]] [[0.81250973 0.79933488]] [[0.1525975 0.11802537]] [[1.24522313 1.2445803 ]]] rmse: 0.5781 ------------------------------------------------------------------ seed:1 [[[0.135322 0.11680414]] [[0.17687858 0.14726829]] [[0.15234107 0.11795982]] [[0.09166154 0.07991387]]] rmse: 0.1273 ------------------------------------------------------------------ seed:2 [[[0.13536181 0.11669613]] [[0.15038517 0.12341251]] [[0.15249813 0.11799876]] [[0.09672982 0.08569219]]] rmse: 0.1223 ------------------------------------------------------------------ rmse mean: 0.2759 =================================================================== K=32, lr=0.01, num_layers=2, hidden_dim=256, alpha=0.001 seed:0 [[[0.13530535 0.11683623]] [[0.15539487 0.12452674]] [[0.15259528 0.11802525]] [[0.17435326 0.15742939]]] rmse: 0.1418 ------------------------------------------------------------------ seed:1 [[[0.13532208 0.11680443]] [[0.19698206 0.16629249]] [[0.15258842 0.11802353]] [[0.09169007 0.07994089]]] rmse: 0.1322 ------------------------------------------------------------------ seed:2 [[[0.13530978 0.11678991]] [[0.16012094 0.13210414]] [[1.22893349 1.22770396]] [[0.09156104 0.07981838]]] rmse: 0.3965 ------------------------------------------------------------------ rmse mean: 0.2235 =================================================================== K=32, lr=0.01, num_layers=2, hidden_dim=256, alpha=0.01 seed:0 [[[0.13523804 0.11673454]] [[0.51998594 0.49916238]] [[0.15259828 0.11802603]] [[0.09019319 0.07854182]]] rmse: 0.2138 ------------------------------------------------------------------ seed:1 [[[0.13532256 0.11680472]] [[0.17407283 0.1446626 ]] [[0.15242786 0.11797709]] [[0.05502311 0.04560162]]] rmse: 0.1177 ------------------------------------------------------------------ seed:2 [[[0.11936952 0.10326077]] [[0.15010267 0.12103065]] [[0.15249209 0.11799785]] [[0.0432306 0.03638312]]] rmse: 0.1055 ------------------------------------------------------------------ rmse mean: 0.1457 ===================================================================
K=64, lr=0.001, num_layers=1, hidden_dim=16, alpha=0.0 seed:0 [[[0.05098472 0.04276758]] [[0.09600758 0.0794247 ]] [[0.06755043 0.05467814]] [[0.12221486 0.11042029]]] rmse: 0.0780 ------------------------------------------------------------------ seed:1 [[[0.05877801 0.04910229]] [[0.09818773 0.08178811]] [[0.11026765 0.09767024]] [[0.04167184 0.03336008]]] rmse: 0.0714 ------------------------------------------------------------------ seed:2 [[[0.0442943 0.03412713]] [[0.11015845 0.09607128]] [[0.09800475 0.09127957]] [[0.04501422 0.03581753]]] rmse: 0.0693 ------------------------------------------------------------------ rmse mean: 0.0729 =================================================================== K=64, lr=0.001, num_layers=1, hidden_dim=16, alpha=0.0001 seed:0 [[[0.05077751 0.04251366]] [[0.09598106 0.07939761]] [[0.06752955 0.05466063]] [[0.0534813 0.04217609]]] rmse: 0.0608 ------------------------------------------------------------------ seed:1 [[[0.05875085 0.04907672]] [[0.0981793 0.08178157]] [[0.11022817 0.0976431 ]] [[0.04166632 0.03335171]]] rmse: 0.0713 ------------------------------------------------------------------ seed:2 [[[0.04427213 0.03410651]] [[0.1101698 0.09608272]] [[0.09799347 0.09126954]] [[0.0450017 0.03580853]]] rmse: 0.0693 ------------------------------------------------------------------ rmse mean: 0.0672 =================================================================== K=64, lr=0.001, num_layers=1, hidden_dim=16, alpha=0.001 seed:0 [[[0.05066432 0.04242827]] [[0.09594432 0.07936853]] [[0.06737565 0.054531 ]] [[0.05348851 0.04217402]]] rmse: 0.0607 ------------------------------------------------------------------ seed:1 [[[0.05853626 0.04887561]] [[0.11985637 0.10807955]] [[0.0974224 0.09130866]] [[0.04723226 0.03925207]]] rmse: 0.0763 ------------------------------------------------------------------ seed:2 [[[0.0440651 0.03391645]] [[0.11021944 0.09614426]] [[0.0978677 0.09115889]] [[0.04500538 0.03582198]]] rmse: 0.0693 ------------------------------------------------------------------ rmse mean: 0.0688 =================================================================== K=64, lr=0.001, num_layers=1, hidden_dim=16, alpha=0.01 seed:0 [[[0.03685799 0.03019501]] [[0.11386028 0.10293835]] [[0.08821089 0.07970896]] [[0.04038552 0.03335394]]] rmse: 0.0657 ------------------------------------------------------------------ seed:1 [[[0.03815738 0.03120363]] [[0.11862058 0.10823146]] [[0.10527133 0.10008521]] [[0.04778707 0.03833509]]] rmse: 0.0735 ------------------------------------------------------------------ seed:2 [[[0.03948283 0.03135297]] [[0.1198187 0.10599119]] [[0.08937806 0.07994836]] [[0.04135233 0.03248522]]] rmse: 0.0675 ------------------------------------------------------------------ rmse mean: 0.0689 =================================================================== K=64, lr=0.001, num_layers=1, hidden_dim=32, alpha=0.0 seed:0 [[[0.05169753 0.04234459]] [[0.10595942 0.0876955 ]] [[0.10185956 0.09509583]] [[0.04532444 0.03547854]]] rmse: 0.0707 ------------------------------------------------------------------ seed:1 [[[0.05262353 0.04255119]] [[0.07360899 0.05603982]] [[0.12207549 0.11193649]] [[0.04645639 0.03804143]]] rmse: 0.0679 ------------------------------------------------------------------ seed:2 [[[0.04047459 0.02940543]] [[0.10403363 0.08123336]] [[0.09049191 0.08296065]] [[0.04515785 0.03720792]]] rmse: 0.0639 ------------------------------------------------------------------ rmse mean: 0.0675 =================================================================== K=64, lr=0.001, num_layers=1, hidden_dim=32, alpha=0.0001 seed:0 [[[0.05163353 0.04230072]] [[0.10594974 0.08769937]] [[0.10184491 0.09508687]] [[0.04532749 0.03549105]]] rmse: 0.0707 ------------------------------------------------------------------ seed:1 [[[0.05260909 0.04253976]] [[0.07360199 0.05603402]] [[0.12205247 0.11194445]] [[0.04643255 0.03802264]]] rmse: 0.0679 ------------------------------------------------------------------ seed:2 [[[0.04043092 0.02934432]] [[0.10402718 0.08122648]] [[0.09047966 0.08294699]] [[0.04514254 0.03719252]]] rmse: 0.0638 ------------------------------------------------------------------ rmse mean: 0.0675 =================================================================== K=64, lr=0.001, num_layers=1, hidden_dim=32, alpha=0.001 seed:0 [[[0.05118481 0.04197493]] [[0.10585027 0.08769 ]] [[0.10489658 0.10051587]] [[0.04678615 0.03746708]]] rmse: 0.0720 ------------------------------------------------------------------ seed:1 [[[0.05258218 0.04250856]] [[0.11552752 0.09840474]] [[0.11283921 0.10566336]] [[0.04126516 0.03510692]]] rmse: 0.0755 ------------------------------------------------------------------ seed:2 [[[0.0398753 0.0287567 ]] [[0.10597388 0.08320184]] [[0.10302084 0.0961635 ]] [[0.03767741 0.03107939]]] rmse: 0.0657 ------------------------------------------------------------------ rmse mean: 0.0711 =================================================================== K=64, lr=0.001, num_layers=1, hidden_dim=32, alpha=0.01 seed:0 [[[0.04279159 0.03246049]] [[0.11466752 0.10306441]] [[0.10572639 0.10074272]] [[0.04202993 0.03341409]]] rmse: 0.0719 ------------------------------------------------------------------ seed:1 [[[0.04324279 0.03480348]] [[0.11323961 0.0995365 ]] [[0.08086208 0.0713449 ]] [[0.04783617 0.03538729]]] rmse: 0.0658 ------------------------------------------------------------------ seed:2 [[[0.0464385 0.03468574]] [[0.10774911 0.09740442]] [[0.06992424 0.06447069]] [[0.04620434 0.03823838]]] rmse: 0.0631 ------------------------------------------------------------------ rmse mean: 0.0669 =================================================================== K=64, lr=0.001, num_layers=1, hidden_dim=64, alpha=0.0 seed:0 [[[0.03670643 0.02819379]] [[0.10988656 0.09719897]] [[0.09300626 0.08403473]] [[0.05536105 0.04878742]]] rmse: 0.0691 ------------------------------------------------------------------ seed:1 [[[0.04073223 0.03032508]] [[0.11945124 0.09799228]] [[0.09127979 0.08256678]] [[0.04734036 0.03753061]]] rmse: 0.0684 ------------------------------------------------------------------ seed:2 [[[0.03548434 0.02671929]] [[0.10366142 0.08358867]] [[0.08818144 0.08350187]] [[0.04796443 0.03966593]]] rmse: 0.0636 ------------------------------------------------------------------ rmse mean: 0.0670 =================================================================== K=64, lr=0.001, num_layers=1, hidden_dim=64, alpha=0.0001 seed:0 [[[0.03669312 0.02817953]] [[0.10990805 0.09722888]] [[0.09299088 0.08402374]] [[0.05535445 0.04878027]]] rmse: 0.0691 ------------------------------------------------------------------ seed:1 [[[0.04087701 0.03045845]] [[0.11946422 0.09800677]] [[0.09126369 0.08255158]] [[0.04731171 0.03751293]]] rmse: 0.0684 ------------------------------------------------------------------ seed:2 [[[0.03548095 0.02672069]] [[0.1036414 0.08358859]] [[0.0881868 0.08350862]] [[0.04796633 0.03966909]]] rmse: 0.0636 ------------------------------------------------------------------ rmse mean: 0.0671 =================================================================== K=64, lr=0.001, num_layers=1, hidden_dim=64, alpha=0.001 seed:0 [[[0.03667429 0.02813511]] [[0.10993467 0.09733432]] [[0.09280896 0.08386256]] [[0.05422303 0.04410783]]] rmse: 0.0684 ------------------------------------------------------------------ seed:1 [[[0.04096033 0.0305419 ]] [[0.102199 0.08630312]] [[0.1311833 0.12573097]] [[0.04303962 0.03269415]]] rmse: 0.0741 ------------------------------------------------------------------ seed:2 [[[0.03565872 0.02710106]] [[0.10345679 0.08358997]] [[0.0880117 0.08333881]] [[0.04800478 0.03970424]]] rmse: 0.0636 ------------------------------------------------------------------ rmse mean: 0.0687 =================================================================== K=64, lr=0.001, num_layers=1, hidden_dim=64, alpha=0.01 seed:0 [[[0.03655153 0.02787728]] [[0.11437223 0.10419591]] [[0.08838801 0.07965342]] [[0.04009783 0.03395621]]] rmse: 0.0656 ------------------------------------------------------------------ seed:1 [[[0.03724617 0.02838967]] [[0.11880371 0.11118556]] [[0.08775561 0.08141276]] [[0.04626591 0.03713495]]] rmse: 0.0685 ------------------------------------------------------------------ seed:2 [[[0.0361188 0.027763 ]] [[0.10028025 0.09131633]] [[0.09272802 0.08593964]] [[0.04892546 0.0402371 ]]] rmse: 0.0654 ------------------------------------------------------------------ rmse mean: 0.0665 =================================================================== K=64, lr=0.001, num_layers=1, hidden_dim=128, alpha=0.0 seed:0 [[[0.06203738 0.04864598]] [[0.0523472 0.04146916]] [[0.08794052 0.08064858]] [[0.04257162 0.03320581]]] rmse: 0.0561 ------------------------------------------------------------------ seed:1 [[[0.04990725 0.03772319]] [[0.10416311 0.08839075]] [[0.10253079 0.08939285]] [[0.04386767 0.03492364]]] rmse: 0.0689 ------------------------------------------------------------------ seed:2 [[[0.06052295 0.04729338]] [[0.08199468 0.06492012]] [[0.11268772 0.1075185 ]] [[0.04662345 0.03599614]]] rmse: 0.0697 ------------------------------------------------------------------ rmse mean: 0.0649 =================================================================== K=64, lr=0.001, num_layers=1, hidden_dim=128, alpha=0.0001 seed:0 [[[0.06193411 0.04856139]] [[0.0523589 0.04147292]] [[0.08794983 0.08065584]] [[0.04257217 0.03320357]]] rmse: 0.0561 ------------------------------------------------------------------ seed:1 [[[0.0498959 0.03771672]] [[0.10414915 0.08837913]] [[0.10251225 0.08938217]] [[0.04386372 0.03492017]]] rmse: 0.0689 ------------------------------------------------------------------ seed:2 [[[0.06052918 0.04729754]] [[0.08198332 0.06491245]] [[0.11266963 0.10749787]] [[0.0465714 0.03594746]]] rmse: 0.0697 ------------------------------------------------------------------ rmse mean: 0.0649 =================================================================== K=64, lr=0.001, num_layers=1, hidden_dim=128, alpha=0.001 seed:0 [[[0.06105787 0.04784788]] [[0.05234853 0.04144567]] [[0.08791079 0.08061061]] [[0.04258491 0.03315338]]] rmse: 0.0559 ------------------------------------------------------------------ seed:1 [[[0.04981988 0.03767547]] [[0.10408283 0.08831488]] [[0.10232074 0.08924727]] [[0.04382087 0.0348835 ]]] rmse: 0.0688 ------------------------------------------------------------------ seed:2 [[[0.04454472 0.03418018]] [[0.12023964 0.10497893]] [[0.10701063 0.09807094]] [[0.03678514 0.02995639]]] rmse: 0.0720 ------------------------------------------------------------------ rmse mean: 0.0655 =================================================================== K=64, lr=0.001, num_layers=1, hidden_dim=128, alpha=0.01 seed:0 [[[0.0416844 0.03376896]] [[0.11646112 0.10604757]] [[0.10254181 0.09598026]] [[0.05068271 0.04031097]]] rmse: 0.0734 ------------------------------------------------------------------ seed:1 [[[0.04055925 0.03236542]] [[0.11878614 0.11061179]] [[0.09779138 0.08876866]] [[0.0448521 0.03808753]]] rmse: 0.0715 ------------------------------------------------------------------ seed:2 [[[0.03929944 0.02905764]] [[0.0945357 0.08176639]] [[0.0849602 0.07759757]] [[0.04463626 0.03598173]]] rmse: 0.0610 ------------------------------------------------------------------ rmse mean: 0.0686 =================================================================== K=64, lr=0.001, num_layers=1, hidden_dim=256, alpha=0.0 seed:0 [[[0.039703 0.03189537]] [[0.1195124 0.0996314 ]] [[0.11623015 0.11084332]] [[0.04541164 0.03479073]]] rmse: 0.0748 ------------------------------------------------------------------ seed:1 [[[0.03449727 0.02722601]] [[0.10721476 0.08841668]] [[0.1177029 0.11400171]] [[0.04270915 0.03422874]]] rmse: 0.0707 ------------------------------------------------------------------ seed:2 [[[0.04195985 0.0321877 ]] [[0.15576733 0.13417669]] [[0.10076142 0.0962698 ]] [[0.04269693 0.03433189]]] rmse: 0.0798 ------------------------------------------------------------------ rmse mean: 0.0751 =================================================================== K=64, lr=0.001, num_layers=1, hidden_dim=256, alpha=0.0001 seed:0 [[[0.03967852 0.03187941]] [[0.11949878 0.09963563]] [[0.11622549 0.11083924]] [[0.04541099 0.03478959]]] rmse: 0.0747 ------------------------------------------------------------------ seed:1 [[[0.0345171 0.02725136]] [[0.10721846 0.08844785]] [[0.11766395 0.11396898]] [[0.04269731 0.03421991]]] rmse: 0.0707 ------------------------------------------------------------------ seed:2 [[[0.04190986 0.03214667]] [[0.15576884 0.13417804]] [[0.10080584 0.09631082]] [[0.04269561 0.03433465]]] rmse: 0.0798 ------------------------------------------------------------------ rmse mean: 0.0751 =================================================================== K=64, lr=0.001, num_layers=1, hidden_dim=256, alpha=0.001 seed:0 [[[0.03943322 0.03170657]] [[0.12033269 0.10342121]] [[0.11847298 0.11463163]] [[0.04040908 0.03166514]]] rmse: 0.0750 ------------------------------------------------------------------ seed:1 [[[0.03461889 0.02736739]] [[0.10710767 0.08850171]] [[0.11734622 0.11371198]] [[0.04258547 0.03413637]]] rmse: 0.0707 ------------------------------------------------------------------ seed:2 [[[0.04159864 0.03184877]] [[0.15582008 0.13423553]] [[0.10093781 0.09643068]] [[0.0426261 0.03431304]]] rmse: 0.0797 ------------------------------------------------------------------ rmse mean: 0.0751 =================================================================== K=64, lr=0.001, num_layers=1, hidden_dim=256, alpha=0.01 seed:0 [[[0.0374298 0.0303026 ]] [[0.12259533 0.11325756]] [[0.10988338 0.10688854]] [[0.04270131 0.03386448]]] rmse: 0.0746 ------------------------------------------------------------------ seed:1 [[[0.03572391 0.02802735]] [[0.10298737 0.08985843]] [[0.0985839 0.09445266]] [[0.04674831 0.03878 ]]] rmse: 0.0669 ------------------------------------------------------------------ seed:2 [[[0.03836771 0.02865967]] [[0.10486469 0.09413264]] [[0.10067199 0.09468164]] [[0.04689026 0.0388564 ]]] rmse: 0.0684 ------------------------------------------------------------------ rmse mean: 0.0700 =================================================================== K=64, lr=0.001, num_layers=2, hidden_dim=16, alpha=0.0 seed:0 [[[0.03424598 0.02712757]] [[0.10141319 0.08172909]] [[0.10569061 0.10082323]] [[0.04307516 0.03349352]]] rmse: 0.0659 ------------------------------------------------------------------ seed:1 [[[0.04965943 0.04101911]] [[0.11794168 0.10442629]] [[0.09372701 0.08470727]] [[0.03720286 0.02938672]]] rmse: 0.0698 ------------------------------------------------------------------ seed:2 [[[0.06346486 0.05301039]] [[0.11156384 0.09120748]] [[0.11103752 0.10533885]] [[0.03716666 0.02931393]]] rmse: 0.0753 ------------------------------------------------------------------ rmse mean: 0.0703 =================================================================== K=64, lr=0.001, num_layers=2, hidden_dim=16, alpha=0.0001 seed:0 [[[0.03419798 0.02709127]] [[0.1013306 0.0816523 ]] [[0.10567412 0.10080836]] [[0.04331441 0.0337477 ]]] rmse: 0.0660 ------------------------------------------------------------------ seed:1 [[[0.04960571 0.04096709]] [[0.11785 0.10434078]] [[0.09373116 0.08471192]] [[0.03720469 0.02939403]]] rmse: 0.0697 ------------------------------------------------------------------ seed:2 [[[0.06334302 0.05292152]] [[0.1115611 0.09119911]] [[0.11148923 0.10576784]] [[0.03719856 0.02935429]]] rmse: 0.0754 ------------------------------------------------------------------ rmse mean: 0.0704 =================================================================== K=64, lr=0.001, num_layers=2, hidden_dim=16, alpha=0.001 seed:0 [[[0.03384629 0.02680185]] [[0.102246 0.0825189 ]] [[0.10551698 0.10066729]] [[0.04305471 0.03345719]]] rmse: 0.0660 ------------------------------------------------------------------ seed:1 [[[0.04914725 0.04055345]] [[0.11812028 0.10465583]] [[0.10506242 0.09931913]] [[0.04600037 0.03798498]]] rmse: 0.0751 ------------------------------------------------------------------ seed:2 [[[0.06230846 0.05210299]] [[0.10089972 0.08378302]] [[0.11758594 0.11293986]] [[0.05360502 0.04368719]]] rmse: 0.0784 ------------------------------------------------------------------ rmse mean: 0.0732 =================================================================== K=64, lr=0.001, num_layers=2, hidden_dim=16, alpha=0.01 seed:0 [[[0.0331633 0.0261546 ]] [[0.10748905 0.09231259]] [[0.07913882 0.07278522]] [[0.04062729 0.0338253 ]]] rmse: 0.0607 ------------------------------------------------------------------ seed:1 [[[0.04175225 0.03356631]] [[0.12236876 0.11316135]] [[0.07876922 0.07000567]] [[0.03863121 0.03255859]]] rmse: 0.0664 ------------------------------------------------------------------ seed:2 [[[0.05359664 0.04422841]] [[0.12542831 0.11845257]] [[0.08980237 0.08274498]] [[0.03717835 0.0294164 ]]] rmse: 0.0726 ------------------------------------------------------------------ rmse mean: 0.0665 =================================================================== K=64, lr=0.001, num_layers=2, hidden_dim=32, alpha=0.0 seed:0 [[[0.04594538 0.0329802 ]] [[0.11111422 0.09743902]] [[0.11448983 0.10689902]] [[0.05100246 0.04156651]]] rmse: 0.0752 ------------------------------------------------------------------ seed:1 [[[0.04472407 0.03716676]] [[0.12782842 0.1016594 ]] [[0.09706466 0.09225743]] [[0.04282898 0.03335226]]] rmse: 0.0721 ------------------------------------------------------------------ seed:2 [[[0.02985312 0.02310162]] [[0.126257 0.10239199]] [[0.11050846 0.10762692]] [[0.04106133 0.03170644]]] rmse: 0.0716 ------------------------------------------------------------------ rmse mean: 0.0730 =================================================================== K=64, lr=0.001, num_layers=2, hidden_dim=32, alpha=0.0001 seed:0 [[[0.04588474 0.03292509]] [[0.11117666 0.09748249]] [[0.11449128 0.10690482]] [[0.05099053 0.04155573]]] rmse: 0.0752 ------------------------------------------------------------------ seed:1 [[[0.04468761 0.03713657]] [[0.12780849 0.10164452]] [[0.0970646 0.09225694]] [[0.0428281 0.03335234]]] rmse: 0.0721 ------------------------------------------------------------------ seed:2 [[[0.03029499 0.02233293]] [[0.11776955 0.09174975]] [[0.08303644 0.07912674]] [[0.04831628 0.03777896]]] rmse: 0.0638 ------------------------------------------------------------------ rmse mean: 0.0704 =================================================================== K=64, lr=0.001, num_layers=2, hidden_dim=32, alpha=0.001 seed:0 [[[0.04535306 0.03243862]] [[0.11056564 0.09762123]] [[0.11567701 0.10829871]] [[0.04387428 0.03436129]]] rmse: 0.0735 ------------------------------------------------------------------ seed:1 [[[0.04441542 0.03691904]] [[0.12921866 0.10066668]] [[0.10373414 0.09927638]] [[0.04915841 0.03926904]]] rmse: 0.0753 ------------------------------------------------------------------ seed:2 [[[0.04469604 0.03231792]] [[0.11653579 0.10143973]] [[0.10687424 0.10215836]] [[0.04115026 0.03077142]]] rmse: 0.0720 ------------------------------------------------------------------ rmse mean: 0.0736 =================================================================== K=64, lr=0.001, num_layers=2, hidden_dim=32, alpha=0.01 seed:0 [[[0.04076638 0.03287688]] [[0.11573152 0.09391088]] [[0.08613877 0.08027364]] [[0.03729039 0.03174252]]] rmse: 0.0648 ------------------------------------------------------------------ seed:1 [[[0.03502014 0.02806218]] [[0.10638187 0.09490158]] [[0.10052199 0.09657543]] [[0.03893901 0.03028909]]] rmse: 0.0663 ------------------------------------------------------------------ seed:2 [[[0.0353141 0.02734915]] [[0.11207355 0.10404815]] [[0.1061825 0.1010897 ]] [[0.042063 0.0360296 ]]] rmse: 0.0705 ------------------------------------------------------------------ rmse mean: 0.0672 =================================================================== K=64, lr=0.001, num_layers=2, hidden_dim=64, alpha=0.0 seed:0 [[[0.0366537 0.03058234]] [[0.1161869 0.09432066]] [[0.09846039 0.09265463]] [[0.04257441 0.03205512]]] rmse: 0.0679 ------------------------------------------------------------------ seed:1 [[[0.0382017 0.02833796]] [[0.12226177 0.0999878 ]] [[0.1310305 0.12506729]] [[0.04307198 0.03416497]]] rmse: 0.0778 ------------------------------------------------------------------ seed:2 [[[0.0442897 0.03212302]] [[0.11362128 0.09132415]] [[0.10340927 0.10014616]] [[0.04100023 0.03156522]]] rmse: 0.0697 ------------------------------------------------------------------ rmse mean: 0.0718 =================================================================== K=64, lr=0.001, num_layers=2, hidden_dim=64, alpha=0.0001 seed:0 [[[0.03664247 0.03057497]] [[0.11611726 0.09427671]] [[0.09845529 0.09265049]] [[0.04255882 0.03204487]]] rmse: 0.0679 ------------------------------------------------------------------ seed:1 [[[0.03818365 0.02833002]] [[0.12227764 0.10000647]] [[0.13095296 0.12498095]] [[0.04305631 0.03415375]]] rmse: 0.0777 ------------------------------------------------------------------ seed:2 [[[0.0442261 0.03204954]] [[0.11358205 0.09132257]] [[0.10336191 0.10009423]] [[0.04097692 0.03153675]]] rmse: 0.0696 ------------------------------------------------------------------ rmse mean: 0.0718 =================================================================== K=64, lr=0.001, num_layers=2, hidden_dim=64, alpha=0.001 seed:0 [[[0.03656187 0.03052225]] [[0.11552191 0.09391175]] [[0.09848516 0.09268557]] [[0.04240308 0.03193809]]] rmse: 0.0678 ------------------------------------------------------------------ seed:1 [[[0.03803487 0.02826201]] [[0.12244396 0.10022702]] [[0.09860639 0.09409676]] [[0.05133843 0.03877602]]] rmse: 0.0715 ------------------------------------------------------------------ seed:2 [[[0.04319592 0.03104077]] [[0.11307908 0.09126224]] [[0.10292124 0.09962715]] [[0.04135211 0.03192134]]] rmse: 0.0693 ------------------------------------------------------------------ rmse mean: 0.0695 =================================================================== K=64, lr=0.001, num_layers=2, hidden_dim=64, alpha=0.01 seed:0 [[[0.03617851 0.03041526]] [[0.11069474 0.09140405]] [[0.09682359 0.09295161]] [[0.03845475 0.03160974]]] rmse: 0.0661 ------------------------------------------------------------------ seed:1 [[[0.037155 0.02769948]] [[0.11879505 0.09892065]] [[0.0757914 0.06673987]] [[0.03897657 0.0311225 ]]] rmse: 0.0619 ------------------------------------------------------------------ seed:2 [[[0.03864114 0.02667742]] [[0.11159074 0.09141107]] [[0.08629926 0.08054817]] [[0.03919115 0.03153964]]] rmse: 0.0632 ------------------------------------------------------------------ rmse mean: 0.0637 =================================================================== K=64, lr=0.001, num_layers=2, hidden_dim=128, alpha=0.0 seed:0 [[[0.03250204 0.02556184]] [[0.11326178 0.09660289]] [[0.11856512 0.11439748]] [[0.03798483 0.03005294]]] rmse: 0.0711 ------------------------------------------------------------------ seed:1 [[[0.04825574 0.03523093]] [[0.11015243 0.08595656]] [[0.12104885 0.11668509]] [[0.04783969 0.03871704]]] rmse: 0.0755 ------------------------------------------------------------------ seed:2 [[[0.034149 0.02563278]] [[0.10680694 0.08774474]] [[0.11098343 0.10657549]] [[0.04281891 0.03413618]]] rmse: 0.0686 ------------------------------------------------------------------ rmse mean: 0.0717 =================================================================== K=64, lr=0.001, num_layers=2, hidden_dim=128, alpha=0.0001 seed:0 [[[0.03245984 0.02551783]] [[0.11340096 0.09667947]] [[0.11853635 0.11437557]] [[0.03798587 0.03005607]]] rmse: 0.0711 ------------------------------------------------------------------ seed:1 [[[0.04822933 0.03519988]] [[0.11082734 0.0863192 ]] [[0.12105642 0.11669005]] [[0.04783749 0.03871628]]] rmse: 0.0756 ------------------------------------------------------------------ seed:2 [[[0.03416625 0.02564638]] [[0.10664352 0.08765944]] [[0.1109709 0.10657015]] [[0.04279849 0.03411812]]] rmse: 0.0686 ------------------------------------------------------------------ rmse mean: 0.0718 =================================================================== K=64, lr=0.001, num_layers=2, hidden_dim=128, alpha=0.001 seed:0 [[[0.03215933 0.02521872]] [[0.11337293 0.09669653]] [[0.11836526 0.11430368]] [[0.03796504 0.03005437]]] rmse: 0.0710 ------------------------------------------------------------------ seed:1 [[[0.04801229 0.03494794]] [[0.12891653 0.10106248]] [[0.06348454 0.0570968 ]] [[0.04093099 0.03217143]]] rmse: 0.0633 ------------------------------------------------------------------ seed:2 [[[0.03429896 0.02574906]] [[0.10596791 0.08733765]] [[0.11086148 0.10649746]] [[0.04257554 0.03392174]]] rmse: 0.0684 ------------------------------------------------------------------ rmse mean: 0.0676 =================================================================== K=64, lr=0.001, num_layers=2, hidden_dim=128, alpha=0.01 seed:0 [[[0.05005502 0.03953847]] [[0.11274326 0.09724666]] [[0.11249882 0.10758939]] [[0.03898647 0.03159995]]] rmse: 0.0738 ------------------------------------------------------------------ seed:1 [[[0.04639825 0.03334006]] [[0.10524064 0.08484893]] [[0.11502022 0.11176383]] [[0.03814866 0.03179027]]] rmse: 0.0708 ------------------------------------------------------------------ seed:2 [[[0.03521196 0.0266006 ]] [[0.1165129 0.09578937]] [[0.10049583 0.09799242]] [[0.04085799 0.03348853]]] rmse: 0.0684 ------------------------------------------------------------------ rmse mean: 0.0710 =================================================================== K=64, lr=0.001, num_layers=2, hidden_dim=256, alpha=0.0 seed:0 [[[0.03107598 0.02281557]] [[0.11190404 0.09063903]] [[0.12034818 0.1153186 ]] [[0.047423 0.04005721]]] rmse: 0.0724 ------------------------------------------------------------------ seed:1 [[[0.03748881 0.02763224]] [[0.11210609 0.0984066 ]] [[0.12793305 0.11560767]] [[0.03900482 0.03091919]]] rmse: 0.0736 ------------------------------------------------------------------ seed:2 [[[0.02944722 0.02190771]] [[0.12631375 0.10194289]] [[0.0724766 0.06576011]] [[0.03995225 0.03252666]]] rmse: 0.0613 ------------------------------------------------------------------ rmse mean: 0.0691 =================================================================== K=64, lr=0.001, num_layers=2, hidden_dim=256, alpha=0.0001 seed:0 [[[0.02857166 0.02132435]] [[0.10926924 0.09051808]] [[0.11682264 0.11116308]] [[0.03762487 0.02957679]]] rmse: 0.0681 ------------------------------------------------------------------ seed:1 [[[0.03742154 0.02758757]] [[0.11205667 0.09839977]] [[0.12788573 0.11558439]] [[0.03891517 0.03090637]]] rmse: 0.0736 ------------------------------------------------------------------ seed:2 [[[0.02941852 0.02189089]] [[0.1262042 0.10187819]] [[0.07128479 0.06460331]] [[0.03995265 0.03252752]]] rmse: 0.0610 ------------------------------------------------------------------ rmse mean: 0.0676 =================================================================== K=64, lr=0.001, num_layers=2, hidden_dim=256, alpha=0.001 seed:0 [[[0.03035979 0.02235192]] [[0.1106132 0.09651014]] [[0.11303625 0.11026651]] [[0.04718788 0.03981019]]] rmse: 0.0713 ------------------------------------------------------------------ seed:1 [[[0.03704098 0.0272678 ]] [[0.11827173 0.09953184]] [[0.11829531 0.11353938]] [[0.03938571 0.03090294]]] rmse: 0.0730 ------------------------------------------------------------------ seed:2 [[[0.02898147 0.02146164]] [[0.12569821 0.10159445]] [[0.11511447 0.11214428]] [[0.03626908 0.02879375]]] rmse: 0.0713 ------------------------------------------------------------------ rmse mean: 0.0719 =================================================================== K=64, lr=0.001, num_layers=2, hidden_dim=256, alpha=0.01 seed:0 [[[0.03617729 0.02809219]] [[0.11695542 0.09710897]] [[0.10317124 0.10119966]] [[0.04002701 0.03140069]]] rmse: 0.0693 ------------------------------------------------------------------ seed:1 [[[0.03435514 0.02500453]] [[0.11424118 0.09876574]] [[0.11534255 0.11032772]] [[0.0400623 0.03063305]]] rmse: 0.0711 ------------------------------------------------------------------ seed:2 [[[0.03324239 0.02477723]] [[0.12275564 0.10039122]] [[0.10743358 0.10485397]] [[0.038286 0.03128075]]] rmse: 0.0704 ------------------------------------------------------------------ rmse mean: 0.0702 ===================================================================
K=64, lr=0.01, num_layers=1, hidden_dim=16, alpha=0.0 seed:0 [[[0.05416025 0.04458662]] [[0.12981073 0.10702106]] [[0.08549915 0.07437667]] [[0.04343487 0.0357731 ]]] rmse: 0.0718 ------------------------------------------------------------------ seed:1 [[[0.04613388 0.03657698]] [[0.12010444 0.09843215]] [[0.11437803 0.1101861 ]] [[0.04123893 0.03097258]]] rmse: 0.0748 ------------------------------------------------------------------ seed:2 [[[0.04256513 0.03276562]] [[0.10759051 0.08589018]] [[0.12222746 0.11657763]] [[0.03907658 0.03123393]]] rmse: 0.0722 ------------------------------------------------------------------ rmse mean: 0.0729 =================================================================== K=64, lr=0.01, num_layers=1, hidden_dim=16, alpha=0.0001 seed:0 [[[0.05416033 0.04458691]] [[0.12980939 0.10701981]] [[0.08549742 0.07437478]] [[0.0434347 0.03577301]]] rmse: 0.0718 ------------------------------------------------------------------ seed:1 [[[0.04613385 0.03657717]] [[0.12010273 0.09843002]] [[0.11437751 0.11018569]] [[0.04123744 0.03097122]]] rmse: 0.0748 ------------------------------------------------------------------ seed:2 [[[0.04256497 0.03276544]] [[0.10762946 0.08592869]] [[0.1222278 0.11657807]] [[0.03907354 0.03122938]]] rmse: 0.0722 ------------------------------------------------------------------ rmse mean: 0.0729 =================================================================== K=64, lr=0.01, num_layers=1, hidden_dim=16, alpha=0.001 seed:0 [[[0.05416044 0.04458685]] [[0.12981163 0.10702147]] [[0.08548506 0.07436218]] [[0.04343387 0.03577241]]] rmse: 0.0718 ------------------------------------------------------------------ seed:1 [[[0.04613316 0.03657819]] [[0.12002018 0.0983492 ]] [[0.1143743 0.11018413]] [[0.04123663 0.03096984]]] rmse: 0.0747 ------------------------------------------------------------------ seed:2 [[[0.04256349 0.03276403]] [[0.10778416 0.08608419]] [[0.12222893 0.11657927]] [[0.03904692 0.0311896 ]]] rmse: 0.0723 ------------------------------------------------------------------ rmse mean: 0.0729 =================================================================== K=64, lr=0.01, num_layers=1, hidden_dim=16, alpha=0.01 seed:0 [[[0.05417708 0.04461597]] [[0.12980873 0.10701978]] [[0.08534235 0.07421067]] [[0.04342037 0.03576007]]] rmse: 0.0718 ------------------------------------------------------------------ seed:1 [[[0.04612851 0.0365825 ]] [[0.1188448 0.09716753]] [[0.11435484 0.11017418]] [[0.04117263 0.03089726]]] rmse: 0.0744 ------------------------------------------------------------------ seed:2 [[[0.04254952 0.03275053]] [[0.10962657 0.0879476 ]] [[0.12224874 0.11660168]] [[0.03881231 0.03087 ]]] rmse: 0.0727 ------------------------------------------------------------------ rmse mean: 0.0730 =================================================================== K=64, lr=0.01, num_layers=1, hidden_dim=32, alpha=0.0 seed:0 [[[0.06736412 0.05616719]] [[0.10573963 0.09384666]] [[0.11503607 0.10975465]] [[0.04230327 0.03273379]]] rmse: 0.0779 ------------------------------------------------------------------ seed:1 [[[0.02760684 0.01754064]] [[0.12608249 0.10327259]] [[0.11794989 0.11162065]] [[0.04057206 0.03277273]]] rmse: 0.0722 ------------------------------------------------------------------ seed:2 [[[0.06040302 0.04991287]] [[0.12151095 0.10081537]] [[0.11485777 0.10972547]] [[0.04246872 0.03408634]]] rmse: 0.0792 ------------------------------------------------------------------ rmse mean: 0.0764 =================================================================== K=64, lr=0.01, num_layers=1, hidden_dim=32, alpha=0.0001 seed:0 [[[0.06736403 0.05616707]] [[0.10573667 0.09384201]] [[0.1150343 0.1097526 ]] [[0.04230295 0.03273357]]] rmse: 0.0779 ------------------------------------------------------------------ seed:1 [[[0.02760984 0.01754195]] [[0.12609289 0.10330333]] [[0.11795002 0.11162038]] [[0.04057013 0.0327703 ]]] rmse: 0.0722 ------------------------------------------------------------------ seed:2 [[[0.06040293 0.0499129 ]] [[0.12151155 0.10081592]] [[0.11485868 0.10972638]] [[0.04246852 0.03408608]]] rmse: 0.0792 ------------------------------------------------------------------ rmse mean: 0.0764 =================================================================== K=64, lr=0.01, num_layers=1, hidden_dim=32, alpha=0.001 seed:0 [[[0.06736384 0.05616696]] [[0.10571608 0.09380912]] [[0.11503456 0.10975248]] [[0.04229945 0.03273108]]] rmse: 0.0779 ------------------------------------------------------------------ seed:1 [[[0.02752598 0.02129842]] [[0.11931559 0.09703895]] [[0.11361446 0.1074801 ]] [[0.04052685 0.03293735]]] rmse: 0.0700 ------------------------------------------------------------------ seed:2 [[[0.06039883 0.04990933]] [[0.12151227 0.10081625]] [[0.11485943 0.10972588]] [[0.04246664 0.03408429]]] rmse: 0.0792 ------------------------------------------------------------------ rmse mean: 0.0757 =================================================================== K=64, lr=0.01, num_layers=1, hidden_dim=32, alpha=0.01 seed:0 [[[0.06735925 0.05616256]] [[0.10553509 0.09350124]] [[0.11503783 0.10975074]] [[0.04226282 0.03270522]]] rmse: 0.0778 ------------------------------------------------------------------ seed:1 [[[0.0662097 0.05552609]] [[0.12113437 0.09880131]] [[0.11921498 0.11362525]] [[0.04414546 0.0366358 ]]] rmse: 0.0819 ------------------------------------------------------------------ seed:2 [[[0.06035381 0.04986936]] [[0.12151533 0.10081568]] [[0.11486663 0.10972225]] [[0.04244832 0.03406667]]] rmse: 0.0792 ------------------------------------------------------------------ rmse mean: 0.0796 =================================================================== K=64, lr=0.01, num_layers=1, hidden_dim=64, alpha=0.0 seed:0 [[[0.04512793 0.03376083]] [[0.16158468 0.13580281]] [[0.12306878 0.1166546 ]] [[0.04023382 0.03023263]]] rmse: 0.0858 ------------------------------------------------------------------ seed:1 [[[0.04887764 0.03734469]] [[0.11952151 0.09919268]] [[0.12121113 0.11589988]] [[0.04101458 0.03355635]]] rmse: 0.0771 ------------------------------------------------------------------ seed:2 [[[0.05310701 0.04108914]] [[0.09869289 0.07856385]] [[0.12569552 0.12069859]] [[0.04533041 0.03720459]]] rmse: 0.0750 ------------------------------------------------------------------ rmse mean: 0.0793 =================================================================== K=64, lr=0.01, num_layers=1, hidden_dim=64, alpha=0.0001 seed:0 [[[0.04512596 0.0337633 ]] [[0.14361147 0.11592219]] [[0.11853786 0.11324987]] [[0.04053147 0.03350973]]] rmse: 0.0805 ------------------------------------------------------------------ seed:1 [[[0.04423823 0.03186722]] [[0.12158637 0.10073599]] [[0.12087435 0.11575886]] [[0.04154123 0.03270595]]] rmse: 0.0762 ------------------------------------------------------------------ seed:2 [[[0.0531068 0.0410978 ]] [[0.09904786 0.07890216]] [[0.12577205 0.12079064]] [[0.04533092 0.03720544]]] rmse: 0.0752 ------------------------------------------------------------------ rmse mean: 0.0773 =================================================================== K=64, lr=0.01, num_layers=1, hidden_dim=64, alpha=0.001 seed:0 [[[0.04512313 0.03375646]] [[0.11050701 0.08503254]] [[0.11882439 0.1134088 ]] [[0.040531 0.03350915]]] rmse: 0.0726 ------------------------------------------------------------------ seed:1 [[[0.04970813 0.03990197]] [[0.12787602 0.10435163]] [[0.11675595 0.11052652]] [[0.04319546 0.03503167]]] rmse: 0.0784 ------------------------------------------------------------------ seed:2 [[[0.05310048 0.04118111]] [[0.13146292 0.11156631]] [[0.11905471 0.11389117]] [[0.04539014 0.03713368]]] rmse: 0.0816 ------------------------------------------------------------------ rmse mean: 0.0775 =================================================================== K=64, lr=0.01, num_layers=1, hidden_dim=64, alpha=0.01 seed:0 [[[0.04507581 0.03369589]] [[0.1313228 0.1079263 ]] [[0.12059796 0.11615244]] [[0.04551762 0.03695905]]] rmse: 0.0797 ------------------------------------------------------------------ seed:1 [[[0.04316654 0.03228677]] [[0.13127495 0.1106734 ]] [[0.12131348 0.11546702]] [[0.0400781 0.03304379]]] rmse: 0.0784 ------------------------------------------------------------------ seed:2 [[[0.05318562 0.04195465]] [[0.10710623 0.08618769]] [[0.1218788 0.11728255]] [[0.04039202 0.03204341]]] rmse: 0.0750 ------------------------------------------------------------------ rmse mean: 0.0777 =================================================================== K=64, lr=0.01, num_layers=1, hidden_dim=128, alpha=0.0 seed:0 [[[0.05338583 0.04284652]] [[0.12271557 0.10279688]] [[0.11245138 0.1077808 ]] [[0.0462181 0.03700616]]] rmse: 0.0782 ------------------------------------------------------------------ seed:1 [[[0.04438713 0.03507872]] [[0.13078468 0.10616415]] [[0.11717646 0.11155049]] [[0.04233886 0.0305943 ]]] rmse: 0.0773 ------------------------------------------------------------------ seed:2 [[[0.05294986 0.0438733 ]] [[0.11026615 0.09070297]] [[0.12089839 0.11468247]] [[0.0405841 0.03148821]]] rmse: 0.0757 ------------------------------------------------------------------ rmse mean: 0.0770 =================================================================== K=64, lr=0.01, num_layers=1, hidden_dim=128, alpha=0.0001 seed:0 [[[0.05359162 0.04308745]] [[0.12302046 0.10320237]] [[0.11184773 0.10689547]] [[0.04621786 0.03700612]]] rmse: 0.0781 ------------------------------------------------------------------ seed:1 [[[0.04438742 0.0350797 ]] [[0.13078359 0.1061632 ]] [[0.11717479 0.11154944]] [[0.0428515 0.03103674]]] rmse: 0.0774 ------------------------------------------------------------------ seed:2 [[[0.05295493 0.04387801]] [[0.11065246 0.09122698]] [[0.12089513 0.11467964]] [[0.04061981 0.0315269 ]]] rmse: 0.0758 ------------------------------------------------------------------ rmse mean: 0.0771 =================================================================== K=64, lr=0.01, num_layers=1, hidden_dim=128, alpha=0.001 seed:0 [[[0.05709867 0.0467494 ]] [[0.12225718 0.10213541]] [[0.11166347 0.10663215]] [[0.04088243 0.03151994]]] rmse: 0.0774 ------------------------------------------------------------------ seed:1 [[[0.0443884 0.03507928]] [[0.13077983 0.10616067]] [[0.11716599 0.11154707]] [[0.04230748 0.03056654]]] rmse: 0.0772 ------------------------------------------------------------------ seed:2 [[[0.05295313 0.04387633]] [[0.11033145 0.09082678]] [[0.12088176 0.11467205]] [[0.04069872 0.03161333]]] rmse: 0.0757 ------------------------------------------------------------------ rmse mean: 0.0768 =================================================================== K=64, lr=0.01, num_layers=1, hidden_dim=128, alpha=0.01 seed:0 [[[0.0569545 0.04660725]] [[0.12498218 0.10295416]] [[0.11207657 0.10803444]] [[0.04614416 0.03693946]]] rmse: 0.0793 ------------------------------------------------------------------ seed:1 [[[0.04438928 0.03508789]] [[0.13075599 0.1061436 ]] [[0.11693598 0.11144401]] [[0.04301609 0.03119621]]] rmse: 0.0774 ------------------------------------------------------------------ seed:2 [[[0.05295603 0.04387965]] [[0.11401438 0.09331824]] [[0.12075354 0.11461325]] [[0.04063856 0.03154307]]] rmse: 0.0765 ------------------------------------------------------------------ rmse mean: 0.0777 =================================================================== K=64, lr=0.01, num_layers=1, hidden_dim=256, alpha=0.0 seed:0 [[[0.02896942 0.0208567 ]] [[0.16426448 0.13471699]] [[0.1242992 0.11985985]] [[0.03679065 0.0277398 ]]] rmse: 0.0822 ------------------------------------------------------------------ seed:1 [[[0.05160221 0.04121845]] [[0.11529634 0.09167258]] [[0.11284535 0.106675 ]] [[0.04227984 0.03383225]]] rmse: 0.0744 ------------------------------------------------------------------ seed:2 [[[0.0474338 0.03855859]] [[0.15352286 0.12511842]] [[0.10698423 0.10185412]] [[0.04008227 0.03160964]]] rmse: 0.0806 ------------------------------------------------------------------ rmse mean: 0.0791 =================================================================== K=64, lr=0.01, num_layers=1, hidden_dim=256, alpha=0.0001 seed:0 [[[0.02900515 0.02091376]] [[0.16597111 0.13634792]] [[0.12430388 0.11986289]] [[0.03678944 0.02774214]]] rmse: 0.0826 ------------------------------------------------------------------ seed:1 [[[0.0638988 0.05338996]] [[0.12498976 0.10381167]] [[0.0491417 0.03879107]] [[0.03586326 0.02884468]]] rmse: 0.0623 ------------------------------------------------------------------ seed:2 [[[0.04856167 0.03985608]] [[0.15606955 0.12734122]] [[0.10767199 0.10244274]] [[0.0459171 0.03754728]]] rmse: 0.0832 ------------------------------------------------------------------ rmse mean: 0.0760 =================================================================== K=64, lr=0.01, num_layers=1, hidden_dim=256, alpha=0.001 seed:0 [[[0.02855812 0.02046068]] [[0.16596771 0.13634279]] [[0.12457126 0.1199916 ]] [[0.03643889 0.02795774]]] rmse: 0.0825 ------------------------------------------------------------------ seed:1 [[[0.03984341 0.0287472 ]] [[0.11531903 0.09169243]] [[0.11284913 0.10667788]] [[0.03837705 0.02991022]]] rmse: 0.0704 ------------------------------------------------------------------ seed:2 [[[0.05004435 0.04142471]] [[0.16329376 0.13395309]] [[0.1352758 0.1318335 ]] [[0.03846486 0.03145166]]] rmse: 0.0907 ------------------------------------------------------------------ rmse mean: 0.0812 =================================================================== K=64, lr=0.01, num_layers=1, hidden_dim=256, alpha=0.01 seed:0 [[[0.02835106 0.02066304]] [[0.14716313 0.12131061]] [[0.12462823 0.12001848]] [[0.03680151 0.02766883]]] rmse: 0.0783 ------------------------------------------------------------------ seed:1 [[[0.04263411 0.03242212]] [[0.17162895 0.14219881]] [[0.13406119 0.11348584]] [[0.04402049 0.03678455]]] rmse: 0.0897 ------------------------------------------------------------------ seed:2 [[[0.07547585 0.05956211]] [[0.11005187 0.09270547]] [[0.11337239 0.10832706]] [[0.318957 0.30609926]]] rmse: 0.1481 ------------------------------------------------------------------ rmse mean: 0.1053 =================================================================== K=64, lr=0.01, num_layers=2, hidden_dim=16, alpha=0.0 seed:0 [[[0.13417648 0.11583934]] [[0.17369372 0.14428191]] [[0.14545863 0.11615487]] [[0.09068696 0.07899516]]] rmse: 0.1249 ------------------------------------------------------------------ seed:1 [[[0.04811456 0.04383224]] [[0.17338522 0.14403325]] [[0.15245597 0.1179826 ]] [[0.15695655 0.14134347]]] rmse: 0.1223 ------------------------------------------------------------------ seed:2 [[[0.05403352 0.04284887]] [[0.17300469 0.14356898]] [[0.15213347 0.11794229]] [[0.03748014 0.03264154]]] rmse: 0.0942 ------------------------------------------------------------------ rmse mean: 0.1138 =================================================================== K=64, lr=0.01, num_layers=2, hidden_dim=16, alpha=0.0001 seed:0 [[[0.13418107 0.11584329]] [[0.17370004 0.14428712]] [[0.14884855 0.11699092]] [[0.09034168 0.07868296]]] rmse: 0.1254 ------------------------------------------------------------------ seed:1 [[[0.10279132 0.09348102]] [[0.1731447 0.14370847]] [[0.15189694 0.11782062]] [[0.03568864 0.02816701]]] rmse: 0.1058 ------------------------------------------------------------------ seed:2 [[[0.03222617 0.02307358]] [[0.1694567 0.13999132]] [[0.15076275 0.11744027]] [[0.08907243 0.07741017]]] rmse: 0.0999 ------------------------------------------------------------------ rmse mean: 0.1104 =================================================================== K=64, lr=0.01, num_layers=2, hidden_dim=16, alpha=0.001 seed:0 [[[0.13417114 0.11583491]] [[0.17372117 0.14430602]] [[0.14528296 0.11627954]] [[1.17287586 1.1693364 ]]] rmse: 0.3965 ------------------------------------------------------------------ seed:1 [[[0.13320275 0.1150633 ]] [[0.17330335 0.14387046]] [[0.15051686 0.11748954]] [[0.08691849 0.0753416 ]]] rmse: 0.1245 ------------------------------------------------------------------ seed:2 [[[0.16246821 0.13163008]] [[0.21790099 0.18627569]] [[0.15075659 0.11743858]] [[0.03896829 0.03099115]]] rmse: 0.1296 ------------------------------------------------------------------ rmse mean: 0.2168 =================================================================== K=64, lr=0.01, num_layers=2, hidden_dim=16, alpha=0.01 seed:0 [[[0.13419021 0.11585121]] [[0.17368759 0.14427713]] [[0.14543886 0.11615745]] [[0.08755203 0.06812743]]] rmse: 0.1232 ------------------------------------------------------------------ seed:1 [[[0.13339891 0.11522035]] [[0.17330121 0.14386823]] [[0.15054089 0.1175029 ]] [[0.08682426 0.07525064]]] rmse: 0.1245 ------------------------------------------------------------------ seed:2 [[[0.18961154 0.15202967]] [[0.17248639 0.14301416]] [[0.15055659 0.11746149]] [[0.09083233 0.07912312]]] rmse: 0.1369 ------------------------------------------------------------------ rmse mean: 0.1282 =================================================================== K=64, lr=0.01, num_layers=2, hidden_dim=32, alpha=0.0 seed:0 [[[0.1329426 0.11485889]] [[0.1736019 0.14415089]] [[0.13006253 0.11476005]] [[0.03510128 0.02871905]]] rmse: 0.1093 ------------------------------------------------------------------ seed:1 [[[0.1348966 0.11643451]] [[0.17057501 0.14103933]] [[0.15451854 0.11993113]] [[0.09108079 0.07935012]]] rmse: 0.1260 ------------------------------------------------------------------ seed:2 [[[0.13342754 0.11442761]] [[0.17433391 0.14492052]] [[0.15237139 0.11795814]] [[0.09084411 0.07915056]]] rmse: 0.1259 ------------------------------------------------------------------ rmse mean: 0.1204 =================================================================== K=64, lr=0.01, num_layers=2, hidden_dim=32, alpha=0.0001 seed:0 [[[0.13293666 0.11485421]] [[0.17364462 0.14419815]] [[0.14524799 0.11609084]] [[0.10965157 0.10223162]]] rmse: 0.1299 ------------------------------------------------------------------ seed:1 [[[0.1348964 0.11643375]] [[0.17024587 0.14069833]] [[0.15541129 0.12079054]] [[0.09107928 0.07935063]]] rmse: 0.1261 ------------------------------------------------------------------ seed:2 [[[0.13641062 0.1170944 ]] [[0.17435162 0.14493732]] [[0.15237634 0.11796041]] [[0.09078601 0.07909176]]] rmse: 0.1266 ------------------------------------------------------------------ rmse mean: 0.1275 =================================================================== K=64, lr=0.01, num_layers=2, hidden_dim=32, alpha=0.001 seed:0 [[[0.13292935 0.11484976]] [[0.17362013 0.14417801]] [[0.14546481 0.11613975]] [[0.08568797 0.0743293 ]]] rmse: 0.1234 ------------------------------------------------------------------ seed:1 [[[0.13489636 0.11642898]] [[0.17150383 0.1420028 ]] [[0.15659288 0.12187836]] [[0.0910773 0.07934716]]] rmse: 0.1267 ------------------------------------------------------------------ seed:2 [[[0.1195413 0.10351069]] [[0.17477025 0.14532713]] [[0.15236634 0.11795721]] [[0.0908834 0.07919039]]] rmse: 0.1229 ------------------------------------------------------------------ rmse mean: 0.1244 =================================================================== K=64, lr=0.01, num_layers=2, hidden_dim=32, alpha=0.01 seed:0 [[[0.13289535 0.11482527]] [[0.17362462 0.14418003]] [[0.14639721 0.11636965]] [[0.08465644 0.07319742]]] rmse: 0.1233 ------------------------------------------------------------------ seed:1 [[[0.13489604 0.1164311 ]] [[0.17013009 0.14058011]] [[0.15425751 0.11969825]] [[0.09116383 0.07942723]]] rmse: 0.1258 ------------------------------------------------------------------ seed:2 [[[0.13335377 0.11522061]] [[0.17441764 0.14499862]] [[0.15238513 0.11796521]] [[0.09091851 0.0792184 ]]] rmse: 0.1261 ------------------------------------------------------------------ rmse mean: 0.1251 =================================================================== K=64, lr=0.01, num_layers=2, hidden_dim=64, alpha=0.0 seed:0 [[[0.1353747 0.11674232]] [[0.33081133 0.29821538]] [[0.15256946 0.11802026]] [[0.09156215 0.07979163]]] rmse: 0.1654 ------------------------------------------------------------------ seed:1 [[[0.13541956 0.11689453]] [[0.17430354 0.14488765]] [[0.15145865 0.11765396]] [[0.09132423 0.07959944]]] rmse: 0.1264 ------------------------------------------------------------------ seed:2 [[[0.13520452 0.11670253]] [[0.17421502 0.1448039 ]] [[0.15238732 0.1179685 ]] [[0.03630924 0.03104119]]] rmse: 0.1136 ------------------------------------------------------------------ rmse mean: 0.1351 =================================================================== K=64, lr=0.01, num_layers=2, hidden_dim=64, alpha=0.0001 seed:0 [[[0.13542593 0.11686629]] [[0.32908322 0.29654739]] [[0.15253948 0.11805367]] [[0.09167387 0.07993873]]] rmse: 0.1650 ------------------------------------------------------------------ seed:1 [[[0.13542299 0.11689872]] [[0.17815306 0.14844255]] [[0.15159144 0.11776299]] [[0.09133015 0.07960564]]] rmse: 0.1274 ------------------------------------------------------------------ seed:2 [[[0.1351845 0.11667898]] [[0.17178157 0.14259957]] [[0.15240648 0.11797723]] [[0.13422092 0.12374959]]] rmse: 0.1368 ------------------------------------------------------------------ rmse mean: 0.1431 =================================================================== K=64, lr=0.01, num_layers=2, hidden_dim=64, alpha=0.001 seed:0 [[[0.13543951 0.11690297]] [[0.42306414 0.39724909]] [[0.14877422 0.11677864]] [[0.09158658 0.07982159]]] rmse: 0.1887 ------------------------------------------------------------------ seed:1 [[[0.13541826 0.11689223]] [[0.17427409 0.14486011]] [[0.15174259 0.11790363]] [[0.09133258 0.07960826]]] rmse: 0.1265 ------------------------------------------------------------------ seed:2 [[[0.13520166 0.1166991 ]] [[0.17421957 0.1448081 ]] [[0.15240219 0.11797636]] [[0.04237062 0.0344632 ]]] rmse: 0.1148 ------------------------------------------------------------------ rmse mean: 0.1433 =================================================================== K=64, lr=0.01, num_layers=2, hidden_dim=64, alpha=0.01 seed:0 [[[0.13559767 0.11723025]] [[0.14509601 0.1184405 ]] [[0.187309 0.15420629]] [[0.09158309 0.07980466]]] rmse: 0.1287 ------------------------------------------------------------------ seed:1 [[[0.13541714 0.11689049]] [[0.17385185 0.14446528]] [[0.15333028 0.119066 ]] [[0.09132053 0.07959333]]] rmse: 0.1267 ------------------------------------------------------------------ seed:2 [[[0.13518873 0.11668364]] [[0.1742266 0.14481492]] [[0.15237584 0.11796487]] [[0.05101287 0.04292557]]] rmse: 0.1169 ------------------------------------------------------------------ rmse mean: 0.1241 =================================================================== K=64, lr=0.01, num_layers=2, hidden_dim=128, alpha=0.0 seed:0 [[[0.13488202 0.11642818]] [[0.17229639 0.14282172]] [[0.15262153 0.11807695]] [[0.09057127 0.07889091]]] rmse: 0.1258 ------------------------------------------------------------------ seed:1 [[[0.13541511 0.11688478]] [[0.17436217 0.14495359]] [[0.15260646 0.11803379]] [[0.09136837 0.07963851]]] rmse: 0.1267 ------------------------------------------------------------------ seed:2 [[[0.13523763 0.11673041]] [[0.17426528 0.14485688]] [[0.15257315 0.11801727]] [[0.09158351 0.07983211]]] rmse: 0.1266 ------------------------------------------------------------------ rmse mean: 0.1264 =================================================================== K=64, lr=0.01, num_layers=2, hidden_dim=128, alpha=0.0001 seed:0 [[[0.13487844 0.11642546]] [[0.1723589 0.14288501]] [[0.15259272 0.11805221]] [[0.09020327 0.07820958]]] rmse: 0.1257 ------------------------------------------------------------------ seed:1 [[[0.13541534 0.11688488]] [[0.17435915 0.14495077]] [[0.15260614 0.11803211]] [[0.09134316 0.07961915]]] rmse: 0.1267 ------------------------------------------------------------------ seed:2 [[[0.13521481 0.11671084]] [[0.17426501 0.14485666]] [[0.15257311 0.11801711]] [[0.0916059 0.07986087]]] rmse: 0.1266 ------------------------------------------------------------------ rmse mean: 0.1263 =================================================================== K=64, lr=0.01, num_layers=2, hidden_dim=128, alpha=0.001 seed:0 [[[0.13488271 0.11642938]] [[0.17155961 0.14208894]] [[0.15263921 0.11809209]] [[0.39263771 0.38269002]]] rmse: 0.2014 ------------------------------------------------------------------ seed:1 [[[0.13541513 0.11688463]] [[0.17436206 0.14495348]] [[0.15259595 0.11802154]] [[0.09134358 0.07961963]]] rmse: 0.1266 ------------------------------------------------------------------ seed:2 [[[0.13522361 0.11671863]] [[0.17426526 0.1448569 ]] [[0.15257475 0.11801879]] [[0.09158404 0.07983313]]] rmse: 0.1266 ------------------------------------------------------------------ rmse mean: 0.1516 =================================================================== K=64, lr=0.01, num_layers=2, hidden_dim=128, alpha=0.01 seed:0 [[[0.13489136 0.11643657]] [[0.17236581 0.14286055]] [[0.15257437 0.1180363 ]] [[0.12254251 0.11030442]]] rmse: 0.1338 ------------------------------------------------------------------ seed:1 [[[0.1354157 0.1168853 ]] [[0.17436578 0.14495696]] [[0.15260037 0.11802623]] [[0.09135207 0.07962753]]] rmse: 0.1267 ------------------------------------------------------------------ seed:2 [[[0.13521458 0.11671079]] [[0.17426558 0.1448572 ]] [[0.1525752 0.11801782]] [[0.09160186 0.07984791]]] rmse: 0.1266 ------------------------------------------------------------------ rmse mean: 0.1290 =================================================================== K=64, lr=0.01, num_layers=2, hidden_dim=256, alpha=0.0 seed:0 [[[0.13540474 0.11687546]] [[0.1742035 0.14480125]] [[0.15259417 0.11802556]] [[0.09166772 0.07991824]]] rmse: 0.1267 ------------------------------------------------------------------ seed:1 [[[0.13541283 0.1168401 ]] [[0.17430401 0.14489534]] [[1.19498653 1.19021664]] [[0.09167339 0.0799234 ]]] rmse: 0.3910 ------------------------------------------------------------------ seed:2 [[[0.13543584 0.11690189]] [[0.17429711 0.14488763]] [[0.21209466 0.18336104]] [[0.09168196 0.07993175]]] rmse: 0.1423 ------------------------------------------------------------------ rmse mean: 0.2200 =================================================================== K=64, lr=0.01, num_layers=2, hidden_dim=256, alpha=0.0001 seed:0 [[[0.13540624 0.11687691]] [[0.17483981 0.14539353]] [[0.15259469 0.11802602]] [[0.09166858 0.07991908]]] rmse: 0.1268 ------------------------------------------------------------------ seed:1
5. 总结
经过上面的内容可以看出,对于所选择的四组电池的数据,GRU模型优于Transformer模型,主要原因如下:
1. 数据特性
电池容量随放电周期的变化数据具有较强的时间依赖性和序列性。GRU(门控循环单元)专为处理这种时间序列数据而设计,能够有效捕捉长短期依赖关系。
2. 模型结构
GRU模型与Transformer模型在结构上有显著不同:
GRU模型:
- 专为时间序列数据设计,能够有效处理序列数据中的时间依赖关系。
- 由于其门机制,GRU能够捕捉长时间跨度的依赖关系,而不容易出现梯度消失问题。
- 添加噪声有助于提高模型的鲁棒性,但不会过多复杂化模型。
Transformer模型:
- 通常用于自然语言处理和图像处理任务,擅长处理自注意力机制。
- 需要较大的数据量和计算资源来充分发挥其优势。
- 可能过于复杂,对于相对简单的时间序列预测任务,可能出现过拟合或效果不佳的情况。
3. 模型复杂度与数据量
GRU模型:
- 相对简单,参数较少,能够在小数据集上表现良好。
- 更容易训练,收敛速度更快。
Transformer模型:
- 结构复杂,参数较多,适合大数据集和更复杂的任务。
- 对计算资源和数据量的需求较高,可能在小数据集上表现不如GRU。
4. 参数调整
虽然已经尽量对齐参数设置,但Transformer模型的参数调整比GRU更为复杂,可能需要更细致的调优。
5. 噪声和正则化
在GRU模型中添加噪声可能有助于提高模型的鲁棒性,而Transformer模型中这种处理可能没有同样的效果。
总结一下:
- 数据特性: 电池容量预测数据具有较强的时间依赖性,GRU在这类任务上有天然优势。
- 模型结构: GRU更简单直接,适合处理时间序列数据,而Transformer在处理时间序列数据上可能不如GRU高效。
- 模型复杂度: GRU模型参数较少,更适合小数据集,而Transformer模型更复杂,可能导致过拟合或收敛缓慢。
- 训练与正则化: 添加噪声有助于提高GRU模型的鲁棒性,但在Transformer模型中可能没有显著效果。
在这种特定任务和数据集下,GRU模型优于Transformer模型可能是因为其设计更适合时间序列数据,结构更简单,参数更少,并且在处理较小数据集时表现更佳。Transformer模型的复杂性和对大数据集的需求可能使其在这类任务中表现不如GRU。
性能提升建议 如果你希望进一步优化Transformer模型,可以尝试以下方法:
- 增加数据量: 如果可能,收集更多的数据。
- 优化参数: 进一步调优Transformer模型的参数,如层数、隐藏单元数、学习率等。
- 简化模型: 适当简化Transformer模型,减少参数数量。
- 数据增强: 使用数据增强技术,生成更多样本以提升模型的泛化能力。
6. 作业
在我们的数据集中有三十多组电池的数据,请大家使用这三十多组数据进行模型训练与预测,可从原始数据中选择百分之十的数据作为测试数据。模型还是选择GRU和Transformer,可以在扩充数据量后再对比两种模型的性能。



