Bohrium
robot
新建

空间站广场

论文
Notebooks
比赛
课程
Apps
我的主页
我的Notebooks
我的论文库
我的足迹

我的工作空间

任务
节点
文件
数据集
镜像
项目
数据库
公开
LimitIRSTD-Track1 Submission Example
AI4SCUP-PRCV
AI4SCUP-PRCV
赛事组委会-应昕怡
更新于 2024-06-22
推荐镜像 :prcv-infer:1.6
推荐机型 :c8_m31_1 * NVIDIA T4
LimitIRSTD-Track1示例数据(v1)

Submission Example

代码
文本

alt

  1. Click the "New dataset" button to import "Local Code".
  2. Click the "Import" button to import the your personal notebook. See the code submission example below.
代码
文本

Submission Example (SIRST3 Example dataset)

For personal notebook code debugging

代码
文本
[1]
# Download the LESPS code to the evaluation platform locally
# Participants choose to download their own github code or upload their own local code via the "New Dataset" button.
# Note: The file uploaded through the "New dataset" button only has read permission but not write permission, so you need to copy it through the cp command.
!rm -rf /LESPS
!git clone https://github.com/XinyiYing/LESPS
代码
文本
[2]
# Load the example dataset: SIRST3
!mkdir -p /LESPS/datasets/SIRST3 # Create a new folder to store the example dataset
!cp -r /bohr/LimitIRSTD-Track1-Sample-7mq8/v1/* /LESPS/datasets/SIRST3 # Download the sample data to /LESPS/dataset/SIRST3
# Load the test dataset
# Note that, when participants submit their code, the path of the test set is $DATA_PATH/*, and the data set name can be customized.
# !mkdir -p /LESPS/datasets/LimitIRSTD # Create a new folder to store the test data
# !cp -r $DATA_PATH/* /LESPS/datasets/LimitIRSTD # Download the test dataset to /LESPS datasets/LimitIRSTD
代码
文本
[7]
%%bash
# Complete the "training process" of DNANet_LESPS_coarse model on SIRST3 under coarse point supervision.
# To simplify the process, only 2 epochs are provided, the default setting is 400 epochs.
cd /LESPS
python train.py --model_names DNANet --dataset_names SIRST3 --label_type 'coarse' --nEpochs 2
代码
文本
[8]
%%bash
# Complete the "training process" of DNANet model on SIRST3 under full supervision.
# To simplify the process, only 2 epochs are provided, the default setting is 400 epochs.
cd /LESPS
python train_full.py --model_names DNANet --dataset_names SIRST3 --label_type 'full' --nEpochs 2
代码
文本
[10]
%%bash
# Complete the "inference and evaluation process" of DNANet_LESPS_coarse model on SIRST3.
cd /LESPS
python test.py --model_names DNANet --dataset_names SIRST3 --pth_dirs SIRST3/DNANet_LESPS_coarse.pth.tar
代码
文本
[6]
%%bash
# Complete the "inference process" of DNANet_LESPS_coarse model on SIRST3.
# Results are saved in /LESPS/results/SIRST3/DNANet_LESPS_coarse/
cd /LESPS
python inference.py --model_names DNANet --dataset_names SIRST3 --pth_dirs SIRST3/DNANet_LESPS_coarse.pth.tar --save_img True
代码
文本
[11]
%%bash
# Compress the results into submission.zip, and move it to the specified folder.
# Note that: The ranking process is automatically running.
original_dir=$PWD
cd /LESPS/results/SIRST3/ # cd path
cp -r DNANet_LESPS_coarse mask
zip -r submission.zip mask/ # Compress submission.zip
mv submission.zip $original_dir/ # Move submission.zip to the specified folder for automatically ranking.
代码
文本

Submission sample (Test dataset)

For code submission and leaderboard scoring

代码
文本
[ ]
%%bash
# Download the LESPS code
rm -rf LESPS
git clone https://github.com/XinyiYing/LESPS
代码
文本
[ ]
%%bash
# Load the test dataset
mkdir -p LESPS/datasets/LimitIRSTD
cp -r $DATA_PATH/* LESPS/datasets/LimitIRSTD
cp -r LESPS/datasets/LimitIRSTD/img_idx/test.txt LESPS/datasets/LimitIRSTD/img_idx/test_LimitIRSTD.txt
cp -r LESPS/datasets/LimitIRSTD/img_idx/test.txt LESPS/datasets/LimitIRSTD/img_idx/train_LimitIRSTD.txt
代码
文本
[ ]
%%bash
# Download the weight baseline model
cd LESPS
wget https://bohrium.oss-cn-zhangjiakou.aliyuncs.com/competition/15/DNANet_LESPS_coarse_400.pth.tar
mkdir -p log/LimitIRSTD/
mv DNANet_LESPS_coarse_400.pth.tar log/LimitIRSTD/
代码
文本
[ ]
# Complete inference process,and save the results in LESPS/results/LimitIRSTD/DNANet_LESPS_coarse/
!cd LESPS && python inference.py --model_names DNANet --dataset_names LimitIRSTD --pth_dirs LimitIRSTD/DNANet_LESPS_coarse_400.pth.tar --img_norm_cfg_mean 76.048 --img_norm_cfg_std 28.732
代码
文本
[ ]
%%bash
# Compress the results into submission.zip, and move it to the specified folder.
# Note that: The ranking process is automatically running.
original_dir=$PWD
cd LESPS/results/LimitIRSTD/ # cd path
cp -r DNANet_LESPS_coarse_400 mask
zip -r submission.zip mask/ # Compress submission.zip
mv submission.zip $original_dir/ # Move submission.zip to the specified folder for automatically ranking.
代码
文本

Directory of test dataset

├──images
│    ├── 00001.png
│    ├── 00002.png
│    ├── ...
│    ├── 00500.png
├── img_idx
│    ├── test.txt
├── statistics.txt
代码
文本
AI4SCUP-PRCV
AI4SCUP-PRCV
点个赞吧
推荐阅读
公开
LimitIRSTD-Track1 代码提交示例
AI4SCUP-PRCV
AI4SCUP-PRCV
赛事组委会-应昕怡
更新于 2024-06-20
公开
Large datasets splitting and optimization (lam-opt) submission
DPAOpenLAM
DPAOpenLAM
SchrodingersCat
更新于 2024-06-17