Uni-GBSA:为高通量虚拟筛选设计的结合自由能计算自动化工具
2023年6月17日,深势科技在Briefings in Bioinformatics上发表了一篇题为Uni-GBSA: an open-source and web-based automatic workflow to perform MM/GB(PB)SA calculations for virtual screening的文章,发布了Uni-GBSA结合自由能自动计算套件。Uni-GBSA可以自动地完成MM/GB(PB)SA计算的拓扑准备、结构优化和结合自由能计算整个流程。在有若干化合物亲和力实验数据的蛋白体系中,Uni-GBSA可以自动进行结合自由能计算参数扫描,挑选最优的参数组合。此外,为了在虚拟筛选中快速评估大量蛋白-配体复合物的结合自由能计算,Uni-GBSA还提供了一种并行批处理模式,可以同时评估数千个分子。这项工作降低了结合自由能计算工具的使用门槛,为结合自由能计算虚拟筛选中的广泛应用提供了高效的计算工具。
June 19, 2023 – In a recent publication in the Briefings in Bioinformatics, Uni-GBSA: an open-source and web-based automatic workflow to perform MM/GB(PB)SA calculations for virtual screening, DP Technology has introduced Uni-GBSA, a user-friendly automatic workflow to perform MM/GB(PB)SA calculations. Uni-GBSA can perform topology preparation, structure optimization, binding free energy calculation and parameter scanning for MM/GB(PB)SA calculations. It also offers a batch mode that evaluates thousands of molecules against one protein target in parallel for efficient application in virtual screening. The default parameters are selected after systematic testing on the PDBBind-2011 refined dataset. In our case studies, Uni-GBSA produced a satisfactory correlation with the experimental binding affinities and outperformed AutoDock Vina in molecular enrichment.
**Uni-GBSA现面向用户开放免费获取!**遵从使用协议,用户可以从深势科技GitHub仓库的Uni-GBSA release页面获取Uni-GBSA的最新发行版。
Uni-GBSA is available for users to obtain for free! In compliance with the usage agreement, users can obtain the latest release of Uni-GBSA from DeepTech's GitHub repository on the Uni-GBSA release page.
通过本教程,你可以学会如何安装Uni-GBSA,使用Uni-GBSA运行结合自由能计算任务,并对其结果进行简单分析。
Through this tutorial, you can learn how to install Uni-GBSA, perform MM/GB(PB)SA calculations using Uni-GBSA, and perform a simple analysis of the results.
快速开始:点击上方的 开始连接 按钮,选择 unigbsa:0.1.4镜像及任意CPU节点配置,稍等片刻即可运行。
Quick Start: Click the Start Connection button at the top, choose the unigbsa:0.1.4 image and any CPU node configuration, and wait a moment to run.
1. [Installation] 下载和安装Uni-GBSA
Uni-GBSA的运行依赖于包括acpype、gmx_MMPBSA、lickit等的第三方软件,这些软件在当前的镜像中已经安装。
Uni-GBSA depends on several third-party softwares including acpype, gmx_MMPBSA, lickit, etc. These softwares have already been installed in this image.
如果不在此镜像中或者不在Bohrium平台,可以按照以下方式通过Conda安装Uni-GBSA以及第三方安装包。
If you want to install Uni-GBSA on a different image or not on the Bohrium web platform, you can install Uni-GBSA and its third-party dependencies using Conda.
conda create -n gbsa -c conda-forge acpype openmpi mpi4py gromacs
conda activate gbsa
pip install unigbsa gmx_MMPBSA>=1.5.6 lickit
Looking in indexes: https://pypi.tuna.tsinghua.edu.cn/simple Collecting unigbsa==0.1.5 Downloading https://pypi.tuna.tsinghua.edu.cn/packages/dc/12/45ae03f4a22f483a69c4dea91bf7522a375ca7aca9367745f83a0db92c94/unigbsa-0.1.5-py3-none-any.whl (419 kB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 419.4/419.4 kB 565.2 kB/s eta 0:00:00a 0:00:01 Requirement already satisfied: acpype in /opt/mamba/envs/gbsa/lib/python3.10/site-packages (from unigbsa==0.1.5) (2022.6.6) Requirement already satisfied: gmx-MMPBSA>=1.5.6 in /opt/mamba/envs/gbsa/lib/python3.10/site-packages (from unigbsa==0.1.5) (1.6.1) Requirement already satisfied: lickit in /opt/mamba/envs/gbsa/lib/python3.10/site-packages (from unigbsa==0.1.5) (0.1.0) Requirement already satisfied: tqdm in /opt/mamba/envs/gbsa/lib/python3.10/site-packages (from unigbsa==0.1.5) (4.65.0) Requirement already satisfied: pandas>=1.2.2 in /opt/mamba/envs/gbsa/lib/python3.10/site-packages (from gmx-MMPBSA>=1.5.6->unigbsa==0.1.5) (2.0.2) Requirement already satisfied: seaborn<0.12 in /opt/mamba/envs/gbsa/lib/python3.10/site-packages (from gmx-MMPBSA>=1.5.6->unigbsa==0.1.5) (0.11.2) Requirement already satisfied: mpi4py>=3.1.3 in /opt/mamba/envs/gbsa/lib/python3.10/site-packages (from gmx-MMPBSA>=1.5.6->unigbsa==0.1.5) (3.1.4) Requirement already satisfied: scipy>=1.6.1 in /opt/mamba/envs/gbsa/lib/python3.10/site-packages (from gmx-MMPBSA>=1.5.6->unigbsa==0.1.5) (1.10.1) Requirement already satisfied: matplotlib>=3.5.1 in /opt/mamba/envs/gbsa/lib/python3.10/site-packages (from gmx-MMPBSA>=1.5.6->unigbsa==0.1.5) (3.7.1) Requirement already satisfied: contourpy>=1.0.1 in /opt/mamba/envs/gbsa/lib/python3.10/site-packages (from matplotlib>=3.5.1->gmx-MMPBSA>=1.5.6->unigbsa==0.1.5) (1.1.0) Requirement already satisfied: cycler>=0.10 in /opt/mamba/envs/gbsa/lib/python3.10/site-packages (from matplotlib>=3.5.1->gmx-MMPBSA>=1.5.6->unigbsa==0.1.5) (0.11.0) Requirement already satisfied: fonttools>=4.22.0 in /opt/mamba/envs/gbsa/lib/python3.10/site-packages (from matplotlib>=3.5.1->gmx-MMPBSA>=1.5.6->unigbsa==0.1.5) (4.40.0) Requirement already satisfied: kiwisolver>=1.0.1 in /opt/mamba/envs/gbsa/lib/python3.10/site-packages (from matplotlib>=3.5.1->gmx-MMPBSA>=1.5.6->unigbsa==0.1.5) (1.4.4) Requirement already satisfied: numpy>=1.20 in /opt/mamba/envs/gbsa/lib/python3.10/site-packages (from matplotlib>=3.5.1->gmx-MMPBSA>=1.5.6->unigbsa==0.1.5) (1.25.0) Requirement already satisfied: packaging>=20.0 in /opt/mamba/envs/gbsa/lib/python3.10/site-packages (from matplotlib>=3.5.1->gmx-MMPBSA>=1.5.6->unigbsa==0.1.5) (23.1) Requirement already satisfied: pillow>=6.2.0 in /opt/mamba/envs/gbsa/lib/python3.10/site-packages (from matplotlib>=3.5.1->gmx-MMPBSA>=1.5.6->unigbsa==0.1.5) (9.5.0) Requirement already satisfied: pyparsing>=2.3.1 in /opt/mamba/envs/gbsa/lib/python3.10/site-packages (from matplotlib>=3.5.1->gmx-MMPBSA>=1.5.6->unigbsa==0.1.5) (3.1.0) Requirement already satisfied: python-dateutil>=2.7 in /opt/mamba/envs/gbsa/lib/python3.10/site-packages (from matplotlib>=3.5.1->gmx-MMPBSA>=1.5.6->unigbsa==0.1.5) (2.8.2) Requirement already satisfied: pytz>=2020.1 in /opt/mamba/envs/gbsa/lib/python3.10/site-packages (from pandas>=1.2.2->gmx-MMPBSA>=1.5.6->unigbsa==0.1.5) (2023.3) Requirement already satisfied: tzdata>=2022.1 in /opt/mamba/envs/gbsa/lib/python3.10/site-packages (from pandas>=1.2.2->gmx-MMPBSA>=1.5.6->unigbsa==0.1.5) (2023.3) Requirement already satisfied: six>=1.5 in /opt/mamba/envs/gbsa/lib/python3.10/site-packages (from python-dateutil>=2.7->matplotlib>=3.5.1->gmx-MMPBSA>=1.5.6->unigbsa==0.1.5) (1.16.0) Installing collected packages: unigbsa Attempting uninstall: unigbsa Found existing installation: unigbsa 0.1.4 Uninstalling unigbsa-0.1.4: Successfully uninstalled unigbsa-0.1.4 Successfully installed unigbsa-0.1.5 WARNING: Running pip as the 'root' user can result in broken permissions and conflicting behaviour with the system package manager. It is recommended to use a virtual environment instead: https://pip.pypa.io/warnings/venv
Uni-GBSA还包含很多命令行: unigbsa-pipeline
, unigbsa-scan
, unigbsa-traj
, unigbsa-pbc
, unigbsa-buildtop
, unigbsa-buildsys
, unigbsa-md
。你可以使用下面的单元格来探索它们。
Uni-GBSA contains many command lines:
unigbsa-pipeline
,unigbsa-scan
,unigbsa-traj
,unigbsa-pbc
,unigbsa-buildtop
,unigbsa-buildsys
,unigbsa-md
. You can explore them using the cell below.
2. [Run PBSA/GBSA calculations using Uni-GBSA] 使用Uni-GBSA进行结合自由能计算
其中,unigbsa-pipeline
是将所有的单个工具自动化的核心命令行。用户只需要提供蛋白质和配体的输入文件,unigbsa-pipeline
可以自动进行拓扑准备、结构优化到结合自由能计算。
unigbsa-pipeline
is a simple, automatic pipeline to perform MM/GB(PB)SA calculations. You only need to provide a protein file (in the PDB format) and ligand files (in the MOL or SDF format). This function will perform an energy minimization then calculate the PBSA/GBSA values for the each input ligand.
usage: unigbsa-pipeline [-h] -i RECEPTOR [-l LIGAND [LIGAND ...]] [-c CONFIG] [-d LIGDIR] [-f PBSAFILE] [-o OUTFILE] [-nt THREAD] [--decomp] [--verbose] [-v] GBSA Calculation. Version: 0.1.4 options: -h, --help show this help message and exit -i RECEPTOR Input protein file with pdb format. -l LIGAND [LIGAND ...] Ligand files to calculate binding energy. -c CONFIG Configue file, default: /opt/mamba/envs/gbsa/lib/python3.10/site- packages/unigbsa/data/default.ini -d LIGDIR Floder contains many ligand files. file format: .mol or .sdf -f PBSAFILE gmx_MMPBSA input file. default=None -o OUTFILE Output file. -nt THREAD Set number of thread to run this program. --decomp Decompose the free energy. default:False --verbose Keep all the files. -v, --version show program's version number and exit
0
fatal: destination path 'Uni-GBSA' already exists and is not an empty directory.
2.1 [MM/GB(PB)SA calculation of one ligand aginst a receptor] 一个蛋白与一个配体的结合自由能计算
06/20/2023 07:10:46 AM - INFO - Build protein topology. 06/20/2023 07:10:47 AM - INFO - Build ligand topology: 1ceb_ligand 06/20/2023 07:10:49 AM - INFO - Running energy minimization: 1ceb_ligand 06/20/2023 07:10:51 AM - INFO - Run the MMPB(GB)SA. 06/20/2023 07:10:59 AM - INFO - Clean the results. ================================================================================ Results: Energy.csv Dec.csv Frames mode detal_G(kcal/mole) 1 gb -20.0715
0
2.2 [MM/GB(PB)SA calculations of multiple ligands aginst a receptor] 一个蛋白与多个配体的结合自由能计算
06/20/2023 07:18:15 AM - INFO - Build protein topology. 0%| | 0/4 [00:00<?, ?it/s]06/20/2023 07:18:24 AM - INFO - Run the MMPB(GB)SA. 06/20/2023 07:18:25 AM - INFO - Run the MMPB(GB)SA. 06/20/2023 07:18:25 AM - INFO - Run the MMPB(GB)SA. 06/20/2023 07:18:26 AM - INFO - Run the MMPB(GB)SA. 06/20/2023 07:18:43 AM - INFO - Clean the results. 06/20/2023 07:18:43 AM - INFO - Clean the results. 25%|██▌ | 1/4 [00:26<01:20, 26.79s/it]06/20/2023 07:18:44 AM - INFO - Clean the results. 06/20/2023 07:18:45 AM - INFO - Clean the results. 100%|██████████| 4/4 [00:28<00:00, 7.12s/it] ================================================================================ Results: Energy.csv Dec.csv Frames mode detal_G(kcal/mole) 1 gb -43.0858 ================================================================================ Results: Energy.csv Dec.csv Frames mode detal_G(kcal/mole) 1 gb -43.4789 ================================================================================ Results: Energy.csv Dec.csv Frames mode detal_G(kcal/mole) 1 gb -46.1509 ================================================================================ Results: Energy.csv Dec.csv Frames mode detal_G(kcal/mole) 1 gb -49.0785
0
[MM/GB(PB)SA Parameter Scan (Optional)] MM/GB(PB)SA参数扫描 (可选)
如果用户有实验结合数据,Uni-GBSA可以在进行MM/GB(PB)SA计算之前进行自动参数优化。在这个步骤中,用户需要提供一个小型的蛋白质-配体复合物的数据集,它们相应的实验结合数据和用户希望扫描的参数。unigbsa-scan
会使用用户选择的不同参数进行一系列的MM/GB(PB)SA计算,随后通过计算计算的结合自由能和实验数据之间的相关性进行排序,最后返回一组优化参数。这些参数可用于后续的MM/GB(PB)SA计算,用于更大的数据集。
If the user has experimental binding data, Uni-GBSA can perform an automatic parameter optimization prior to production MM/GB(PB)SA calculation. In this step, the user needs to provide a small dataset of protein–ligand complexes, their corresponding experimental binding data and the parameters the user wishes to scan. A series of MM/GB(PB)SA calculations are performed using different sets of parameters chosen by users. The correlation between binding free energies calculated by the MM/GB(PB)SA approach and the experimental data for each set of parameters are automatically calculated and ranked. Finally, a set of optimized parameters for this system are returned, which can be used in the subsequent MM/GB(PB)SA calculations for the larger dataset.
注意:我们建议您选用32核128GB的机器运行以下代码。
Note: We recommend that you use the 32 cores 128 GB machine for testing this section.
usage: unigbsa-scan [-h] [-i RECEPTOR] [-pd PROTDIR] [-l LIGAND [LIGAND ...]] [-ld LIGDIR] -e E -c PARASFILE [-o OUTDIR] [-nt THREAD] [--verbose] GBSA Calculation. options: -h, --help show this help message and exit -i RECEPTOR Input protein file with pdb format. -pd PROTDIR Floder contains many protein files. file format: .pdb -l LIGAND [LIGAND ...] Ligand files to calculate binding energy. -ld LIGDIR Floder contains many ligand files. file format: .mol or .sdf -e E Experiment data file. -c PARASFILE Parameters to scan -o OUTDIR Output directory. -nt THREAD Set number of thread to run this program. --verbose Keep all the files.
0
{'simulation': {'mode': 'em', 'boxtype': 'triclinic', 'boxsize': 0.9, 'conc': 0.15, 'nsteps': 500000, 'nframe': 100, 'eqsteps': 50000, 'proteinforcefield': 'amber03', 'ligandforcefield': 'gaff', 'maxsol': 0, 'ligandCharge': 'bcc'}, 'GBSA': {'sys_name': 'GBSA', 'modes': ['gb-1', 'gb-2', 'gb-5', 'pb-1', 'pb-2'], 'indi': [2.0, 4.0, 3.0], 'exdi': '80.0', 'nonpolarsurfConst': '0.0', 'surften': '0.0072'}}
06/20/2023 15:26:24 PM - INFO - load scan paras. 06/20/2023 15:26:24 PM - INFO - Building protein and ligand topology. 06/20/2023 15:26:24 PM - INFO - Build ligand topology: 1a 06/20/2023 15:26:24 PM - INFO - Build ligand topology: 1b 06/20/2023 15:26:24 PM - INFO - Build ligand topology: 3a 06/20/2023 15:26:24 PM - INFO - Build ligand topology: 3b 06/20/2023 15:26:34 PM - INFO - GBSA calculation: amber03_gaff_bcc em GBSA_modes_gb-1 06/20/2023 15:26:34 PM - INFO - Run the MMPB(GB)SA. 06/20/2023 15:26:34 PM - INFO - Run the MMPB(GB)SA. 06/20/2023 15:26:34 PM - INFO - Run the MMPB(GB)SA. 06/20/2023 15:26:34 PM - INFO - Run the MMPB(GB)SA. 06/20/2023 15:26:54 PM - INFO - Clean the results. 06/20/2023 15:26:54 PM - INFO - Clean the results. 06/20/2023 15:26:54 PM - INFO - Clean the results. 06/20/2023 15:26:54 PM - INFO - Clean the results. ================================================================================ Results: Energy.csv Dec.csv Frames mode detal_G(kcal/mole) 1 gb -44.4101 ================================================================================ Results: Energy.csv Dec.csv Frames mode detal_G(kcal/mole) 1 gb -47.0945 ================================================================================ Results: Energy.csv Dec.csv Frames mode detal_G(kcal/mole) 1 gb -49.9980 ================================================================================ Results: Energy.csv Dec.csv Frames mode detal_G(kcal/mole) 1 gb -43.8871 06/20/2023 15:26:55 PM - INFO - GBSA results: 0.766238667269586 0.5871216952190713 06/20/2023 15:26:55 PM - INFO - GBSA calculation: amber03_gaff_bcc em GBSA_modes_gb-2 06/20/2023 15:26:56 PM - INFO - Run the MMPB(GB)SA. 06/20/2023 15:26:56 PM - INFO - Run the MMPB(GB)SA. 06/20/2023 15:26:56 PM - INFO - Run the MMPB(GB)SA. 06/20/2023 15:26:56 PM - INFO - Run the MMPB(GB)SA. 06/20/2023 15:27:15 PM - INFO - Clean the results. 06/20/2023 15:27:15 PM - INFO - Clean the results. 06/20/2023 15:27:16 PM - INFO - Clean the results. 06/20/2023 15:27:16 PM - INFO - Clean the results. ================================================================================ Results: Energy.csv Dec.csv Frames mode detal_G(kcal/mole) 1 gb -46.1508 ================================================================================ Results: Energy.csv Dec.csv Frames mode detal_G(kcal/mole) 1 gb -43.4590 ================================================================================ Results: Energy.csv Dec.csv Frames mode detal_G(kcal/mole) 1 gb -49.0786 ================================================================================ Results: Energy.csv Dec.csv Frames mode detal_G(kcal/mole) 1 gb -43.0858 06/20/2023 15:27:17 PM - INFO - GBSA results: 0.7538697768291684 0.5683196404164602 06/20/2023 15:27:17 PM - INFO - GBSA calculation: amber03_gaff_bcc em GBSA_modes_gb-5 06/20/2023 15:27:17 PM - INFO - Run the MMPB(GB)SA. 06/20/2023 15:27:17 PM - INFO - Run the MMPB(GB)SA. 06/20/2023 15:27:17 PM - INFO - Run the MMPB(GB)SA. 06/20/2023 15:27:17 PM - INFO - Run the MMPB(GB)SA. 06/20/2023 15:27:37 PM - INFO - Clean the results. 06/20/2023 15:27:37 PM - INFO - Clean the results. 06/20/2023 15:27:37 PM - INFO - Clean the results. 06/20/2023 15:27:38 PM - INFO - Clean the results. ================================================================================ Results: Energy.csv Dec.csv Frames mode detal_G(kcal/mole) 1 gb -46.7154 ================================================================================ Results: Energy.csv Dec.csv Frames mode detal_G(kcal/mole) 1 gb -43.9583 ================================================================================ Results: Energy.csv Dec.csv Frames mode detal_G(kcal/mole) 1 gb -43.6054 ================================================================================ Results: Energy.csv Dec.csv Frames mode detal_G(kcal/mole) 1 gb -49.6686 06/20/2023 15:27:39 PM - INFO - GBSA results: 0.7538205777663287 0.5682454634639617 06/20/2023 15:27:39 PM - INFO - GBSA calculation: amber03_gaff_bcc em GBSA_modes_pb-1 06/20/2023 15:27:39 PM - INFO - Run the MMPB(GB)SA. 06/20/2023 15:27:39 PM - INFO - Run the MMPB(GB)SA. 06/20/2023 15:27:39 PM - INFO - Run the MMPB(GB)SA. 06/20/2023 15:27:39 PM - INFO - Run the MMPB(GB)SA. 06/20/2023 15:28:34 PM - INFO - Clean the results. 06/20/2023 15:28:34 PM - INFO - Clean the results. 06/20/2023 15:28:35 PM - INFO - Clean the results. 06/20/2023 15:28:36 PM - INFO - Clean the results. ================================================================================ Results: Energy.csv Dec.csv Frames mode detal_G(kcal/mole) 1 pb -24.7204 ================================================================================ Results: Energy.csv Dec.csv Frames mode detal_G(kcal/mole) 1 pb -22.0142 ================================================================================ Results: Energy.csv Dec.csv Frames mode detal_G(kcal/mole) 1 pb -20.1450 ================================================================================ Results: Energy.csv Dec.csv Frames mode detal_G(kcal/mole) 1 pb -21.5136 06/20/2023 15:28:37 PM - INFO - GBSA results: 0.459006650471149 0.21068710517674358 06/20/2023 15:28:37 PM - INFO - GBSA calculation: amber03_gaff_bcc em GBSA_modes_pb-2 06/20/2023 15:28:37 PM - INFO - Run the MMPB(GB)SA. 06/20/2023 15:28:37 PM - INFO - Run the MMPB(GB)SA. 06/20/2023 15:28:37 PM - INFO - Run the MMPB(GB)SA. 06/20/2023 15:28:37 PM - INFO - Run the MMPB(GB)SA. 06/20/2023 15:29:32 PM - INFO - Clean the results. 06/20/2023 15:29:33 PM - INFO - Clean the results. 06/20/2023 15:29:39 PM - INFO - Clean the results. 06/20/2023 15:29:39 PM - INFO - Clean the results. ================================================================================ Results: Energy.csv Dec.csv Frames mode detal_G(kcal/mole) 1 pb -21.5190 ================================================================================ Results: Energy.csv Dec.csv Frames mode detal_G(kcal/mole) 1 pb -22.0195 ================================================================================ Results: Energy.csv Dec.csv Frames mode detal_G(kcal/mole) 1 pb -24.7273 ================================================================================ Results: Energy.csv Dec.csv Frames mode detal_G(kcal/mole) 1 pb -20.1523 06/20/2023 15:29:40 PM - INFO - GBSA results: 0.45904917771713166 0.21072614756277472 06/20/2023 15:29:40 PM - INFO - GBSA calculation: amber03_gaff_bcc em GBSA_indi_2.0 06/20/2023 15:29:40 PM - INFO - Run the MMPB(GB)SA. 06/20/2023 15:29:40 PM - INFO - Run the MMPB(GB)SA. 06/20/2023 15:29:40 PM - INFO - Run the MMPB(GB)SA. 06/20/2023 15:29:40 PM - INFO - Run the MMPB(GB)SA. 06/20/2023 15:29:59 PM - INFO - Clean the results. 06/20/2023 15:30:00 PM - INFO - Clean the results. 06/20/2023 15:30:00 PM - INFO - Clean the results. 06/20/2023 15:30:01 PM - INFO - Clean the results. ================================================================================ Results: Energy.csv Dec.csv Frames mode detal_G(kcal/mole) 1 gb -45.9443 ================================================================================ Results: Energy.csv Dec.csv Frames mode detal_G(kcal/mole) 1 gb -43.0410 ================================================================================ Results: Energy.csv Dec.csv Frames mode detal_G(kcal/mole) 1 gb -40.5207 ================================================================================ Results: Energy.csv Dec.csv Frames mode detal_G(kcal/mole) 1 gb -40.6367 06/20/2023 15:30:01 PM - INFO - GBSA results: 0.7025347235707834 0.493555037822677 06/20/2023 15:30:01 PM - INFO - GBSA calculation: amber03_gaff_bcc em GBSA_indi_4.0 06/20/2023 15:30:02 PM - INFO - Run the MMPB(GB)SA. 06/20/2023 15:30:02 PM - INFO - Run the MMPB(GB)SA. 06/20/2023 15:30:02 PM - INFO - Run the MMPB(GB)SA. 06/20/2023 15:30:02 PM - INFO - Run the MMPB(GB)SA. 06/20/2023 15:30:21 PM - INFO - Clean the results. 06/20/2023 15:30:21 PM - INFO - Clean the results. 06/20/2023 15:30:21 PM - INFO - Clean the results. 06/20/2023 15:30:22 PM - INFO - Clean the results. ================================================================================ Results: Energy.csv Dec.csv Frames mode detal_G(kcal/mole) 1 gb -46.1508 ================================================================================ Results: Energy.csv Dec.csv Frames mode detal_G(kcal/mole) 1 gb -43.0858 ================================================================================ Results: Energy.csv Dec.csv Frames mode detal_G(kcal/mole) 1 gb -49.0786 ================================================================================ Results: Energy.csv Dec.csv Frames mode detal_G(kcal/mole) 1 gb -43.4590 06/20/2023 15:30:24 PM - INFO - GBSA results: 0.7538697768291684 0.5683196404164602 06/20/2023 15:30:24 PM - INFO - GBSA calculation: amber03_gaff_bcc em GBSA_indi_3.0 06/20/2023 15:30:24 PM - INFO - Run the MMPB(GB)SA. 06/20/2023 15:30:24 PM - INFO - Run the MMPB(GB)SA. 06/20/2023 15:30:24 PM - INFO - Run the MMPB(GB)SA. 06/20/2023 15:30:24 PM - INFO - Run the MMPB(GB)SA. 06/20/2023 15:30:44 PM - INFO - Clean the results. 06/20/2023 15:30:45 PM - INFO - Clean the results. 06/20/2023 15:30:45 PM - INFO - Clean the results. 06/20/2023 15:30:45 PM - INFO - Clean the results. ================================================================================ Results: Energy.csv Dec.csv Frames mode detal_G(kcal/mole) 1 gb -42.2695 ================================================================================ Results: Energy.csv Dec.csv Frames mode detal_G(kcal/mole) 1 gb -42.4796 ================================================================================ Results: Energy.csv Dec.csv Frames mode detal_G(kcal/mole) 1 gb -45.1143 ================================================================================ Results: Energy.csv Dec.csv Frames mode detal_G(kcal/mole) 1 gb -48.0338 ================================================================================ The best para name is: GBSA_modes_gb-1 The best para R2 is: 0.5871 The best para file is: /data/scan-demo/amber03_gaff_bcc/em/GBSA_modes_gb-1/paras.json ================================================================================ 06/20/2023 15:30:46 PM - INFO - GBSA results: 0.7382766224544969 0.5450523712628197 06/20/2023 15:30:46 PM - INFO - Write output: paras_performance.csv
0
name | R | R2 | parasjson | |
---|---|---|---|---|
0 | GBSA_modes_gb-1 | 0.766239 | 0.587122 | /data/scan-demo/amber03_gaff_bcc/em/GBSA_modes... |
1 | GBSA_modes_gb-2 | 0.753870 | 0.568320 | /data/scan-demo/amber03_gaff_bcc/em/GBSA_modes... |
2 | GBSA_indi_4.0 | 0.753870 | 0.568320 | /data/scan-demo/amber03_gaff_bcc/em/GBSA_indi_... |
3 | GBSA_modes_gb-5 | 0.753821 | 0.568245 | /data/scan-demo/amber03_gaff_bcc/em/GBSA_modes... |
4 | GBSA_indi_3.0 | 0.738277 | 0.545052 | /data/scan-demo/amber03_gaff_bcc/em/GBSA_indi_... |
5 | GBSA_indi_2.0 | 0.702535 | 0.493555 | /data/scan-demo/amber03_gaff_bcc/em/GBSA_indi_... |
6 | GBSA_modes_pb-2 | 0.459049 | 0.210726 | /data/scan-demo/amber03_gaff_bcc/em/GBSA_modes... |
7 | GBSA_modes_pb-1 | 0.459007 | 0.210687 | /data/scan-demo/amber03_gaff_bcc/em/GBSA_modes... |
从这个表格中,我们发现gb-1模式(所有其他参数都是默认值)是这个给定数据集的优化参数集。
From this table, we find that gb-1 mode, with all other parameters being the default, is the optimized parameter set for this given dataset.