Bohrium
robot
新建

空间站广场

论文
Notebooks
比赛
课程
Apps
我的主页
我的Notebooks
我的论文库
我的足迹

我的工作空间

任务
节点
文件
数据集
镜像
项目
数据库
公开
Bk2_Ch18_立体几何_06可视化单位球体几何转换
《可视之美》
python
鸾尾花书
数据可视化
《可视之美》python鸾尾花书数据可视化
刀刀
发布于 2024-05-28
推荐镜像 :Basic Image:bohrium-notebook:2023-04-07
推荐机型 :c2_m4_cpu
可视化单位球体几何转换
单位球

©️ Copyright 2024 @ Authors
共享协议:本作品采用知识共享署名-非商业性使用-相同方式共享 4.0 国际许可协议进行许可。
作者信息:Notebook原地址为 https://github.com/Visualize-ML

代码
文本

Chapter 18

可视化单位球体几何转换

Book_2《可视之美》 | 鸢尾花书:从加减乘除到机器学习

代码
文本
[1]
# 导入包
from mpl_toolkits.mplot3d import axes3d
import matplotlib.pyplot as plt
import numpy as np
import os
# 如果文件夹不存在,创建文件夹
if not os.path.isdir("Figures"):
os.makedirs("Figures")
代码
文本
[2]
def plot_implicit(fn, X_plot, Y_plot, Z_plot, ax, bbox, filename):
# 等高线的起止范围
xmin, xmax, ymin, ymax, zmin, zmax = bbox*3

ax.set_proj_type('ortho')
# 绘制三条参考线
k = 1.5
ax.plot((xmin * k, xmax * k), (0, 0), (0, 0), 'k', lw = 0.1)
ax.plot((0, 0), (ymin * k, ymax * k), (0, 0), 'k', lw = 0.1)
ax.plot((0, 0), (0, 0), (zmin * k, zmax * k), 'k', lw = 0.1)
# 等高线的分辨率
A = np.linspace(xmin, xmax, 500)
# 产生网格数据
A1,A2 = np.meshgrid(A,A)
# 等高线的分割位置
B = np.linspace(xmin, xmax, 40)
# 绘制 XY 平面等高线
if X_plot == True:
for z in B:
X,Y = A1,A2
Z = fn(X,Y,z)
cset = ax.contour(X, Y, Z+z, [z],
zdir='z',
linewidths = 0.25,
colors = '#0066FF',
linestyles = 'solid')

# 绘制 XZ 平面等高线
if Y_plot == True:
for y in B:
X,Z = A1,A2
Y = fn(X,y,Z)
cset = ax.contour(X, Y+y, Z, [y],
zdir='y',
linewidths = 0.25,
colors = '#88DD66',
linestyles = 'solid')
# 绘制 YZ 平面等高线
if Z_plot == True:
for x in B:
Y,Z = A1,A2
X = fn(x,Y,Z)
cset = ax.contour(X+x, Y, Z, [x],
zdir='x',
linewidths = 0.25,
colors = '#FF6600',
linestyles = 'solid')

ax.quiver(0, 0, 0,
xmax, 0, 0,
length = 1,
color = 'r',
normalize=False,
arrow_length_ratio = .07,
linestyles = 'solid',
linewidths = 0.25)

ax.quiver(0, 0, 0,
0, ymax, 0,
length = 1,
color = 'g',
normalize=False,
arrow_length_ratio = .07,
linestyles = 'solid',
linewidths = 0.25)

ax.quiver(0, 0, 0,
0, 0, zmax,
length = 1,
color = 'b',
normalize=False,
arrow_length_ratio = .07,
linestyles = 'solid',
linewidths = 0.25)
ax.set_zlim(zmin * k,zmax * k)
ax.set_xlim(xmin * k,xmax * k)
ax.set_ylim(ymin * k,ymax * k)
ax.set_box_aspect([1,1,1])
ax.view_init(azim=60, elev=30)
ax.axis('off')
fig.savefig('Figures/' + filename + '.svg', format='svg')
代码
文本
[3]
# 缩放 > 旋转
# xT @ x = 1
# A@x = z, A = V @ S
# x = inv(A) @ z
# zT @ inv(A @ AT) z = 1
代码
文本

单位球

代码
文本
[4]
Identity = np.array([[1, 0, 0],
[0, 1, 0],
[0, 0, 1]])
A = Identity
def unit(x,y,z):
f = [[x, y, z]] @ np.linalg.pinv(A @ A.T) @ [[x], [y], [z]]
return f[0,0] - 1

fig = plt.figure(figsize=(6,6))

ax = fig.add_subplot(111, projection='3d')
plot_implicit(unit, True, True, True, ax, (-4,4), '单位球')
/tmp/ipykernel_1031/944982215.py:7: VisibleDeprecationWarning: Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray.
  f = [[x, y, z]] @ np.linalg.pinv(A @ A.T) @ [[x], [y], [z]]
代码
文本
[5]
alpha = np.deg2rad(45)

R_x = np.array([[1, 0, 0],
[0, np.cos(alpha), -np.sin(alpha)],
[0, np.sin(alpha), np.cos(alpha)]])

S_z = np.array([[1, 0, 0],
[0, 1, 0],
[0, 0, 3]])
# A@x = z, A = V @ S
A = S_z

def scale_z_rotate_x(x,y,z):
f = [[x, y, z]] @ np.linalg.pinv(A @ A.T) @ [[x], [y], [z]]
return f[0,0] - 1

fig = plt.figure(figsize=(6,6))

ax = fig.add_subplot(111, projection='3d')
plot_implicit(scale_z_rotate_x, True, True, True, ax, (-4,4), '缩放')
/tmp/ipykernel_1031/1555199623.py:15: VisibleDeprecationWarning: Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray.
  f = [[x, y, z]] @ np.linalg.pinv(A @ A.T) @ [[x], [y], [z]]
代码
文本
[6]
S_z = np.array([[1, 0, 0],
[0, 1, 0],
[0, 0, 3]])

alpha = np.deg2rad(30)

R_x = np.array([[1, 0, 0],
[0, np.cos(alpha), -np.sin(alpha)],
[0, np.sin(alpha), np.cos(alpha)]])

A = R_x @ S_z

def scale_z_rotate_x(x,y,z):
f = [[x, y, z]] @ np.linalg.pinv(A @ A.T) @ [[x], [y], [z]]
return f[0,0] - 1

fig = plt.figure(figsize=(6,6))

ax = fig.add_subplot(111, projection='3d')
plot_implicit(scale_z_rotate_x, True, True, True, ax, (-4,4), '缩放 --- x旋转')
/tmp/ipykernel_1031/1429942179.py:15: VisibleDeprecationWarning: Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray.
  f = [[x, y, z]] @ np.linalg.pinv(A @ A.T) @ [[x], [y], [z]]
代码
文本
[7]
S_z = np.array([[1, 0, 0],
[0, 1, 0],
[0, 0, 3]])

alpha = np.deg2rad(30)

R_x = np.array([[1, 0, 0],
[0, np.cos(alpha), -np.sin(alpha)],
[0, np.sin(alpha), np.cos(alpha)]])

beta = np.deg2rad(45)

# 从 y 正方向看
R_y = np.array([[np.cos(beta), 0, np.sin(beta)],
[0, 1, 0],
[-np.sin(beta),0, np.cos(beta)]])


A = R_y @ R_x @ S_z

def scale_z_rotate_x_y(x,y,z):
f = [[x, y, z]] @ np.linalg.pinv(A @ A.T) @ [[x], [y], [z]]
return f[0,0] - 1

fig = plt.figure(figsize=(6,6))

ax = fig.add_subplot(111, projection='3d')
plot_implicit(scale_z_rotate_x_y, True, True, True, ax, (-4,4), '缩放 --- xy旋转')
/tmp/ipykernel_1031/871422812.py:23: VisibleDeprecationWarning: Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray.
  f = [[x, y, z]] @ np.linalg.pinv(A @ A.T) @ [[x], [y], [z]]
代码
文本
[8]
S_z = np.array([[1, 0, 0],
[0, 1, 0],
[0, 0, 3]])

alpha = np.deg2rad(30)

R_x = np.array([[1, 0, 0],
[0, np.cos(alpha), -np.sin(alpha)],
[0, np.sin(alpha), np.cos(alpha)]])

beta = np.deg2rad(45)

# 从 y 正方向看
R_y = np.array([[np.cos(beta), 0, np.sin(beta)],
[0, 1, 0],
[-np.sin(beta),0, np.cos(beta)]])

gamma = np.deg2rad(60)

R_z = np.array([[np.cos(gamma), -np.sin(gamma), 0],
[np.sin(gamma), np.cos(gamma), 0],
[0, 0, 1]])

A = R_z @ R_y @ R_x @ S_z

def scale_z_rotate_x_y_z(x,y,z):
f = [[x, y, z]] @ np.linalg.pinv(A @ A.T) @ [[x], [y], [z]]
return f[0,0] - 1

fig = plt.figure(figsize=(6,6))

ax = fig.add_subplot(111, projection='3d')
plot_implicit(scale_z_rotate_x_y_z, True, True, True, ax, (-4,4), '缩放 --- xyz旋转')
/tmp/ipykernel_1031/780611931.py:28: VisibleDeprecationWarning: Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray.
  f = [[x, y, z]] @ np.linalg.pinv(A @ A.T) @ [[x], [y], [z]]
代码
文本
《可视之美》
python
鸾尾花书
数据可视化
《可视之美》python鸾尾花书数据可视化
点个赞吧
本文被以下合集收录
Book2《可视之美》 | 鸢尾花书:从加减乘除到机器学习
刀刀
更新于 2024-06-03
198 篇3 人关注
推荐阅读
公开
Bk2_Ch25_距离_07三维空间Lp范数
《可视之美》python鸾尾花书数据可视化
《可视之美》python鸾尾花书数据可视化
刀刀
发布于 2024-05-29
公开
Bk2_Ch22_隐函数_09用等高线绘制几何体
《可视之美》python鸾尾花书数据可视化
《可视之美》python鸾尾花书数据可视化
刀刀
发布于 2024-05-28
1 赞