新建
王月昊-第7天-2403-计算材料学实战
Rigel
推荐镜像 :DeePMD-kit:3.0.0a0-cuda12.1
推荐机型 :c2_m4_cpu
赞
目录
组队共读活动打卡Day7(3月15日,周五)
▶ 今日学习内容:LAMMPS力学性质计算实战2-体模量(对应视频 11 部分)。
▶ 课后任务:
第6个 LAMMPS程序:不断调整晶格常数大小,用lammps计算出在平衡距离附近时,Cu晶体能量与其体积的关系,在此之上拟合出体弹性模量数据。分别尝试使用二次、三次多项式和BM方程进行拟合。分别考虑 LJ 势函数和 EAM 势函数的情况。尝试撰写Notebook,分析哪种结构最稳定,并在报告中提供LAMMPS脚本及分析方法。
代码
文本
Cu体积模量计算脚本
LJ势
代码
文本
[1]
%%writefile in.CuLJ
units metal
boundary p p p
atom_style atomic
#---------- setup loop -----------------
variable i loop 40
variable x equal 3.40+0.01*$i
lattice fcc $x
region box block 0 1 0 1 0 1
create_box 1 box
create_atoms 1 box
mass 1 64
#---------- use Cu LJ parameter----------
pair_style lj/cut 10.0
pair_coeff 1 1 0.40933 2.338
variable v equal ($x)^3
variable n equal count(all)
variable P equal pe
#-------------- run ----------------------
run 0
print "Cohesive Energy of Cu v = $v x= $x E = $P "
clear
next i
jump SELF
Writing in.CuLJ
代码
文本
[2]
%%capture
!OMP_NUM_THREADS=2 lmp -i in.CuLJ
代码
文本
[3]
!grep 'Cohesive' log.lammps
print "Cohesive Energy of Cu v = $v x= $x E = $P " Cohesive Energy of Cu v = 39.651821 x= 3.41 E = -11.6743276227989 print "Cohesive Energy of Cu v = $v x= $x E = $P " Cohesive Energy of Cu v = 40.001688 x= 3.42 E = -11.9405476050061 print "Cohesive Energy of Cu v = $v x= $x E = $P " Cohesive Energy of Cu v = 40.353607 x= 3.43 E = -12.1595640975458 print "Cohesive Energy of Cu v = $v x= $x E = $P " Cohesive Energy of Cu v = 40.707584 x= 3.44 E = -12.3842526979336 print "Cohesive Energy of Cu v = $v x= $x E = $P " Cohesive Energy of Cu v = 41.063625 x= 3.45 E = -12.5895372366665 print "Cohesive Energy of Cu v = $v x= $x E = $P " Cohesive Energy of Cu v = 41.421736 x= 3.46 E = -12.7764125325894 print "Cohesive Energy of Cu v = $v x= $x E = $P " Cohesive Energy of Cu v = 41.781923 x= 3.47 E = -12.9458260014581 print "Cohesive Energy of Cu v = $v x= $x E = $P " Cohesive Energy of Cu v = 42.144192 x= 3.48 E = -13.0986799313477 print "Cohesive Energy of Cu v = $v x= $x E = $P " Cohesive Energy of Cu v = 42.508549 x= 3.49 E = -13.2358336452587 print "Cohesive Energy of Cu v = $v x= $x E = $P " Cohesive Energy of Cu v = 42.875 x= 3.5 E = -13.3581055567528 print "Cohesive Energy of Cu v = $v x= $x E = $P " Cohesive Energy of Cu v = 43.243551 x= 3.51 E = -13.4662751241234 print "Cohesive Energy of Cu v = $v x= $x E = $P " Cohesive Energy of Cu v = 43.614208 x= 3.52 E = -13.5610847083218 print "Cohesive Energy of Cu v = $v x= $x E = $P " Cohesive Energy of Cu v = 43.986977 x= 3.53 E = -13.6432413395693 print "Cohesive Energy of Cu v = $v x= $x E = $P " Cohesive Energy of Cu v = 44.361864 x= 3.54 E = -13.7070496808943 print "Cohesive Energy of Cu v = $v x= $x E = $P " Cohesive Energy of Cu v = 44.738875 x= 3.55 E = -13.7659953596674 print "Cohesive Energy of Cu v = $v x= $x E = $P " Cohesive Energy of Cu v = 45.118016 x= 3.56 E = -13.8142114984977 print "Cohesive Energy of Cu v = $v x= $x E = $P " Cohesive Energy of Cu v = 45.499293 x= 3.57 E = -13.852279849293 print "Cohesive Energy of Cu v = $v x= $x E = $P " Cohesive Energy of Cu v = 45.882712 x= 3.58 E = -13.8807544504762 print "Cohesive Energy of Cu v = $v x= $x E = $P " Cohesive Energy of Cu v = 46.268279 x= 3.59 E = -13.9001629355792 print "Cohesive Energy of Cu v = $v x= $x E = $P " Cohesive Energy of Cu v = 46.656 x= 3.6 E = -13.9110077784364 print "Cohesive Energy of Cu v = $v x= $x E = $P " Cohesive Energy of Cu v = 47.045881 x= 3.61 E = -13.9137674781707 print "Cohesive Energy of Cu v = $v x= $x E = $P " Cohesive Energy of Cu v = 47.437928 x= 3.62 E = -13.9088976869966 print "Cohesive Energy of Cu v = $v x= $x E = $P " Cohesive Energy of Cu v = 47.832147 x= 3.63 E = -13.8968322836988 print "Cohesive Energy of Cu v = $v x= $x E = $P " Cohesive Energy of Cu v = 48.228544 x= 3.64 E = -13.8779843955076 print "Cohesive Energy of Cu v = $v x= $x E = $P " Cohesive Energy of Cu v = 48.627125 x= 3.65 E = -13.8527473709409 print "Cohesive Energy of Cu v = $v x= $x E = $P " Cohesive Energy of Cu v = 49.027896 x= 3.66 E = -13.7961834075309 print "Cohesive Energy of Cu v = $v x= $x E = $P " Cohesive Energy of Cu v = 49.430863 x= 3.67 E = -13.759684579032 print "Cohesive Energy of Cu v = $v x= $x E = $P " Cohesive Energy of Cu v = 49.836032 x= 3.68 E = -13.7178592687278 print "Cohesive Energy of Cu v = $v x= $x E = $P " Cohesive Energy of Cu v = 50.243409 x= 3.69 E = -13.6710307078911 print "Cohesive Energy of Cu v = $v x= $x E = $P " Cohesive Energy of Cu v = 50.653 x= 3.7 E = -13.6195065548619 print "Cohesive Energy of Cu v = $v x= $x E = $P " Cohesive Energy of Cu v = 51.064811 x= 3.71 E = -13.5635796208348 print "Cohesive Energy of Cu v = $v x= $x E = $P " Cohesive Energy of Cu v = 51.478848 x= 3.72 E = -13.5035285612586 print "Cohesive Energy of Cu v = $v x= $x E = $P " Cohesive Energy of Cu v = 51.895117 x= 3.73 E = -13.4396185345301 print "Cohesive Energy of Cu v = $v x= $x E = $P " Cohesive Energy of Cu v = 52.313624 x= 3.74 E = -13.3721018295858 print "Cohesive Energy of Cu v = $v x= $x E = $P " Cohesive Energy of Cu v = 52.734375 x= 3.75 E = -13.3012184639042 print "Cohesive Energy of Cu v = $v x= $x E = $P " Cohesive Energy of Cu v = 53.157376 x= 3.76 E = -13.2271967533648 print "Cohesive Energy of Cu v = $v x= $x E = $P " Cohesive Energy of Cu v = 53.582633 x= 3.77 E = -13.1502538553272 print "Cohesive Energy of Cu v = $v x= $x E = $P " Cohesive Energy of Cu v = 54.010152 x= 3.78 E = -13.0705962862321 print "Cohesive Energy of Cu v = $v x= $x E = $P " Cohesive Energy of Cu v = 54.439939 x= 3.79 E = -12.9884204149546 print "Cohesive Energy of Cu v = $v x= $x E = $P " Cohesive Energy of Cu v = 54.872 x= 3.8 E = -12.9039129330838
代码
文本
[4]
# Read the file and search for lines containing the pattern "Cohesive Energy of Cu v = $v x= $x E = $P"
import re
# Initialize list to hold the matching lines
matching_lines = []
# Define the regex pattern for capturing v and x and E values
pattern = re.compile(r"Cohesive Energy of Cu v = ([\d\.-]+) x= ([\d\.-]+) E = ([\d\.-]+)")
# Read the file and search for the pattern
with open('./log.lammps', 'r') as file:
for line in file:
match = pattern.search(line)
if match:
v_value = float(match.group(1))
x_value = float(match.group(2))
E_value = float(match.group(3))
matching_lines.append((v_value,x_value,E_value))
# Show some of the matching lines
matching_lines[:40]
[(39.651821, 3.41, -11.6743276227989), (40.001688, 3.42, -11.9405476050061), (40.353607, 3.43, -12.1595640975458), (40.707584, 3.44, -12.3842526979336), (41.063625, 3.45, -12.5895372366665), (41.421736, 3.46, -12.7764125325894), (41.781923, 3.47, -12.9458260014581), (42.144192, 3.48, -13.0986799313477), (42.508549, 3.49, -13.2358336452587), (42.875, 3.5, -13.3581055567528), (43.243551, 3.51, -13.4662751241234), (43.614208, 3.52, -13.5610847083218), (43.986977, 3.53, -13.6432413395693), (44.361864, 3.54, -13.7070496808943), (44.738875, 3.55, -13.7659953596674), (45.118016, 3.56, -13.8142114984977), (45.499293, 3.57, -13.852279849293), (45.882712, 3.58, -13.8807544504762), (46.268279, 3.59, -13.9001629355792), (46.656, 3.6, -13.9110077784364), (47.045881, 3.61, -13.9137674781707), (47.437928, 3.62, -13.9088976869966), (47.832147, 3.63, -13.8968322836988), (48.228544, 3.64, -13.8779843955076), (48.627125, 3.65, -13.8527473709409), (49.027896, 3.66, -13.7961834075309), (49.430863, 3.67, -13.759684579032), (49.836032, 3.68, -13.7178592687278), (50.243409, 3.69, -13.6710307078911), (50.653, 3.7, -13.6195065548619), (51.064811, 3.71, -13.5635796208348), (51.478848, 3.72, -13.5035285612586), (51.895117, 3.73, -13.4396185345301), (52.313624, 3.74, -13.3721018295858), (52.734375, 3.75, -13.3012184639042), (53.157376, 3.76, -13.2271967533648), (53.582633, 3.77, -13.1502538553272), (54.010152, 3.78, -13.0705962862321), (54.439939, 3.79, -12.9884204149546), (54.872, 3.8, -12.9039129330838)]
代码
文本
[5]
# Write the extracted v, x, and E values to a CSV file
with open('lj_Cu.csv', 'w') as f:
f.write("v,x,E\n") # Write header
for v, x, E in matching_lines:
f.write(f"{v},{x},{E}\n")
代码
文本
1. 二次多项式拟合
代码
文本
[6]
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
# 读取数据(之前存储的csv文件):
filename = "lj_Cu.csv"
DataFrame = pd.read_csv(filename)
lat = np.array(DataFrame['v'])
ene = np.array(DataFrame['E'])
# 用二次函数拟合:
a,b,c = np.polyfit(lat,ene,2)
mesh = np.linspace(np.min(lat),np.max(lat),1000)
opt_lat = -b/(2*a)
Emin = np.polyval([a,b,c], opt_lat)
print("a,b,c =",a,b,c)
print("Emin =",Emin,"opt_lat =",opt_lat)
# 数据可视化:
plt.scatter(lat, ene, 10)
plt.plot(mesh, a*mesh**2+b*mesh+c)
plt.xlabel('Volume')
plt.ylabel('Energy')
plt.show()
a,b,c = 0.027859136511323872 -2.677008042125913 50.35779796262389 Emin = -13.951195019749292 opt_lat = 48.04542382420561
代码
文本
2. 三次多项式拟合
代码
文本
[7]
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
# 读取数据(之前存储的csv文件):
filename = "lj_Cu.csv"
DataFrame = pd.read_csv(filename)
lat = np.array(DataFrame['v'])
ene = np.array(DataFrame['E'])
# 用三次函数拟合:
a, b, c, d = np.polyfit(lat, ene, 3)
mesh = np.linspace(np.min(lat), np.max(lat), 1000)
opt_lat = -b / (3 * a) # 三次函数极小值
Emin = np.polyval([a, b, c, d], opt_lat)
print("a, b, c, d =", a, b, c, d)
print("Emin =", Emin, "opt_lat =", opt_lat)
# 数据可视化:
plt.scatter(lat, ene, 10)
plt.plot(mesh, a * mesh**3 + b * mesh**2 + c * mesh + d)
plt.xlabel('Volume')
plt.ylabel('Energy')
plt.show()
a, b, c, d = -0.0017381601310075745 0.27402339262618536 -14.234388038073991 230.2287757280661 Emin = -13.3084620063795 opt_lat = 52.55046945671606
代码
文本
3. 用Birch-Murnaghan方程拟合
代码
文本
[8]
import pandas as pd
import numpy as np
# 读取数据(之前存储的csv文件):
df = pd.read_csv('lj_Cu.csv') # 修正文件名为正确的 'lj_Cu.csv'
v = np.array(df['v'])
x = np.array(df['x'])
E = np.array(df['E'])
# 先做一次多项式拟合,根据以上多项式拟合的结果设置初始猜测解X0:
a, b, c = np.polyfit(v, E, 2)
v0 = -b / (2 * a)
e0 = a * v0 ** 2 + b * v0 + c
b0 = 2 * a * v0
bP = 3.5
x0 = [e0, b0, bP, v0]
def Murnaghan(parameters, vol):
E0 = parameters[0]
B0 = parameters[1]
BP = parameters[2]
V0 = parameters[3]
E = E0 + B0 * vol / BP * (((V0 / vol) ** BP) / (BP - 1) + 1) - V0 * B0 / (BP - 1.)
return E
# 定义误差(优化目标)
def residual(pars, y, x):
err = y - Murnaghan(pars, x)
return err
# 进行拟合:
from scipy.optimize import leastsq
murnpars, ier = leastsq(residual, x0, args=(E, v))
# 输出结果
print('Bulk Modulus:', murnpars[1])
print('Lattice constant:', murnpars[3] ** (1 / 3))
# 拟合效果可视化:
from matplotlib import pyplot as plt
v_mesh = np.linspace(np.min(v), np.max(v), 1000)
plt.scatter(v, E, 40)
plt.plot(v_mesh, Murnaghan(murnpars, v_mesh))
plt.ylabel('Energy')
plt.xlabel('Volume')
plt.show()
Bulk Modulus: 2.3208178189964985 Lattice constant: 3.6078449224812617
代码
文本
Birch-Murnaghan方程因为更接近于物理实际,所以得到的结果与解析解最为接 近;体模量的拟合,应优先使用Birch-Murnaghan方程。
代码
文本
EAM势
代码
文本
下载EAM势
代码
文本
[19]
%%bash
## 这行命令可以下载 lammps安装包中,potentials文件夹下的所有势函数,用于后续eam势函数的导入
wget https://bohrium-api.dp.tech/ds-dl/lammps-potentials-8snt-v1.zip
unzip -o ./lammps-potentials-8snt-v1.zip
--2024-03-17 23:49:38-- https://bohrium-api.dp.tech/ds-dl/lammps-potentials-8snt-v1.zip Resolving ga.dp.tech (ga.dp.tech)... 10.255.254.7, 10.255.254.37, 10.255.254.18 Connecting to ga.dp.tech (ga.dp.tech)|10.255.254.7|:8118... connected. Proxy request sent, awaiting response... 307 Temporary Redirect Location: https://dataset-bohr-storage.dp.tech/lbg%2Fdataset%2Fzip%2Fdataset_tiefblue_bohr_11303_lammps-potentials-8snt_v105264.zip?Expires=1710726578&OSSAccessKeyId=LTAI5t8SinfkteepM4WuAEqc&Signature=62TpLNEYxmLTvp%2FDbVwbk%2F8TINY%3D [following] --2024-03-17 23:49:38-- https://dataset-bohr-storage.dp.tech/lbg%2Fdataset%2Fzip%2Fdataset_tiefblue_bohr_11303_lammps-potentials-8snt_v105264.zip?Expires=1710726578&OSSAccessKeyId=LTAI5t8SinfkteepM4WuAEqc&Signature=62TpLNEYxmLTvp%2FDbVwbk%2F8TINY%3D Connecting to ga.dp.tech (ga.dp.tech)|10.255.254.7|:8118... connected. Proxy request sent, awaiting response... 200 OK Length: 15066136 (14M) [application/zip] Saving to: ‘lammps-potentials-8snt-v1.zip’ 0K .......... .......... .......... .......... .......... 0% 25.8M 1s 50K .......... .......... .......... .......... .......... 0% 31.9M 0s 100K .......... .......... .......... .......... .......... 1% 50.9M 0s 150K .......... .......... .......... .......... .......... 1% 35.6M 0s 200K .......... .......... .......... .......... .......... 1% 45.7M 0s 250K .......... .......... .......... .......... .......... 2% 45.6M 0s 300K .......... .......... .......... .......... .......... 2% 8.40M 1s 350K .......... .......... .......... .......... .......... 2% 138M 1s 400K .......... .......... .......... .......... .......... 3% 204M 0s 450K .......... .......... .......... .......... .......... 3% 131M 0s 500K .......... .......... .......... .......... .......... 3% 173M 0s 550K .......... .......... .......... .......... .......... 4% 143M 0s 600K .......... .......... .......... .......... .......... 4% 173M 0s 650K .......... .......... .......... .......... .......... 4% 131M 0s 700K .......... .......... .......... .......... .......... 5% 168M 0s 750K .......... .......... .......... .......... .......... 5% 111M 0s 800K .......... .......... .......... .......... .......... 5% 74.2M 0s 850K .......... .......... .......... .......... .......... 6% 59.9M 0s 900K .......... .......... .......... .......... .......... 6% 68.5M 0s 950K .......... .......... .......... .......... .......... 6% 62.1M 0s 1000K .......... .......... .......... .......... .......... 7% 67.5M 0s 1050K .......... .......... .......... .......... .......... 7% 72.0M 0s 1100K .......... .......... .......... .......... .......... 7% 66.9M 0s 1150K .......... .......... .......... .......... .......... 8% 41.2M 0s 1200K .......... .......... .......... .......... .......... 8% 95.7M 0s 1250K .......... .......... .......... .......... .......... 8% 145M 0s 1300K .......... .......... .......... .......... .......... 9% 80.0M 0s 1350K .......... .......... .......... .......... .......... 9% 70.6M 0s 1400K .......... .......... .......... .......... .......... 9% 94.2M 0s 1450K .......... .......... .......... .......... .......... 10% 83.8M 0s 1500K .......... .......... .......... .......... .......... 10% 130M 0s 1550K .......... .......... .......... .......... .......... 10% 67.7M 0s 1600K .......... .......... .......... .......... .......... 11% 102M 0s 1650K .......... .......... .......... .......... .......... 11% 9.63M 0s 1700K .......... .......... .......... .......... .......... 11% 72.4M 0s 1750K .......... .......... .......... .......... .......... 12% 149M 0s 1800K .......... .......... .......... .......... .......... 12% 59.3M 0s 1850K .......... .......... .......... .......... .......... 12% 73.4M 0s 1900K .......... .......... .......... .......... .......... 13% 89.2M 0s 1950K .......... .......... .......... .......... .......... 13% 58.9M 0s 2000K .......... .......... .......... .......... .......... 13% 1.36M 0s 2050K .......... .......... .......... .......... .......... 14% 86.2M 0s 2100K .......... .......... .......... .......... .......... 14% 59.7M 0s 2150K .......... .......... .......... .......... .......... 14% 150M 0s 2200K .......... .......... .......... .......... .......... 15% 151M 0s 2250K .......... .......... .......... .......... .......... 15% 79.3M 0s 2300K .......... .......... .......... .......... .......... 15% 136M 0s 2350K .......... .......... .......... .......... .......... 16% 84.9M 0s 2400K .......... .......... .......... .......... .......... 16% 119M 0s 2450K .......... .......... .......... .......... .......... 16% 91.6M 0s 2500K .......... .......... .......... .......... .......... 17% 129M 0s 2550K .......... .......... .......... .......... .......... 17% 63.1M 0s 2600K .......... .......... .......... .......... .......... 18% 185M 0s 2650K .......... .......... .......... .......... .......... 18% 75.7M 0s 2700K .......... .......... .......... .......... .......... 18% 139M 0s 2750K .......... .......... .......... .......... .......... 19% 73.0M 0s 2800K .......... .......... .......... .......... .......... 19% 138M 0s 2850K .......... .......... .......... .......... .......... 19% 145M 0s 2900K .......... .......... .......... .......... .......... 20% 102M 0s 2950K .......... .......... .......... .......... .......... 20% 143M 0s 3000K .......... .......... .......... .......... .......... 20% 105M 0s 3050K .......... .......... .......... .......... .......... 21% 124M 0s 3100K .......... .......... .......... .......... .......... 21% 119M 0s 3150K .......... .......... .......... .......... .......... 21% 79.4M 0s 3200K .......... .......... .......... .......... .......... 22% 76.2M 0s 3250K .......... .......... .......... .......... .......... 22% 130M 0s 3300K .......... .......... .......... .......... .......... 22% 97.6M 0s 3350K .......... .......... .......... .......... .......... 23% 102M 0s 3400K .......... .......... .......... .......... .......... 23% 160M 0s 3450K .......... .......... .......... .......... .......... 23% 150M 0s 3500K .......... .......... .......... .......... .......... 24% 164M 0s 3550K .......... .......... .......... .......... .......... 24% 144M 0s 3600K .......... .......... .......... .......... .......... 24% 141M 0s 3650K .......... .......... .......... .......... .......... 25% 19.6M 0s 3700K .......... .......... .......... .......... .......... 25% 188M 0s 3750K .......... .......... .......... .......... .......... 25% 192M 0s 3800K .......... .......... .......... .......... .......... 26% 29.8M 0s 3850K .......... .......... .......... .......... .......... 26% 176M 0s 3900K .......... .......... .......... .......... .......... 26% 166M 0s 3950K .......... .......... .......... .......... .......... 27% 156M 0s 4000K .......... .......... .......... .......... .......... 27% 37.1M 0s 4050K .......... .......... .......... .......... .......... 27% 1.50M 0s 4100K .......... .......... .......... .......... .......... 28% 136M 0s 4150K .......... .......... .......... .......... .......... 28% 73.9M 0s 4200K .......... .......... .......... .......... .......... 28% 127M 0s 4250K .......... .......... .......... .......... .......... 29% 125M 0s 4300K .......... .......... .......... .......... .......... 29% 122M 0s 4350K .......... .......... .......... .......... .......... 29% 121M 0s 4400K .......... .......... .......... .......... .......... 30% 130M 0s 4450K .......... .......... .......... .......... .......... 30% 124M 0s 4500K .......... .......... .......... .......... .......... 30% 84.2M 0s 4550K .......... .......... .......... .......... .......... 31% 122M 0s 4600K .......... .......... .......... .......... .......... 31% 81.2M 0s 4650K .......... .......... .......... .......... .......... 31% 175M 0s 4700K .......... .......... .......... .......... .......... 32% 114M 0s 4750K .......... .......... .......... .......... .......... 32% 103M 0s 4800K .......... .......... .......... .......... .......... 32% 162M 0s 4850K .......... .......... .......... .......... .......... 33% 7.93M 0s 4900K .......... .......... .......... .......... .......... 33% 128M 0s 4950K .......... .......... .......... .......... .......... 33% 145M 0s 5000K .......... .......... .......... .......... .......... 34% 146M 0s 5050K .......... .......... .......... .......... .......... 34% 157M 0s 5100K .......... .......... .......... .......... .......... 35% 105M 0s 5150K .......... .......... .......... .......... .......... 35% 88.3M 0s 5200K .......... .......... .......... .......... .......... 35% 82.7M 0s 5250K .......... .......... .......... .......... .......... 36% 136M 0s 5300K .......... .......... .......... .......... .......... 36% 168M 0s 5350K .......... .......... .......... .......... .......... 36% 124M 0s 5400K .......... .......... .......... .......... .......... 37% 98.9M 0s 5450K .......... .......... .......... .......... .......... 37% 96.7M 0s 5500K .......... .......... .......... .......... .......... 37% 94.7M 0s 5550K .......... .......... .......... .......... .......... 38% 60.0M 0s 5600K .......... .......... .......... .......... .......... 38% 134M 0s 5650K .......... .......... .......... .......... .......... 38% 164M 0s 5700K .......... .......... .......... .......... .......... 39% 154M 0s 5750K .......... .......... .......... .......... .......... 39% 135M 0s 5800K .......... .......... .......... .......... .......... 39% 102M 0s 5850K .......... .......... .......... .......... .......... 40% 152M 0s 5900K .......... .......... .......... .......... .......... 40% 53.8M 0s 5950K .......... .......... .......... .......... .......... 40% 177M 0s 6000K .......... .......... .......... .......... .......... 41% 150M 0s 6050K .......... .......... .......... .......... .......... 41% 30.5M 0s 6100K .......... .......... .......... .......... .......... 41% 191M 0s 6150K .......... .......... .......... .......... .......... 42% 187M 0s 6200K .......... .......... .......... .......... .......... 42% 48.5M 0s 6250K .......... .......... .......... .......... .......... 42% 179M 0s 6300K .......... .......... .......... .......... .......... 43% 168M 0s 6350K .......... .......... .......... .......... .......... 43% 158M 0s 6400K .......... .......... .......... .......... .......... 43% 30.2M 0s 6450K .......... .......... .......... .......... .......... 44% 184M 0s 6500K .......... .......... .......... .......... .......... 44% 203M 0s 6550K .......... .......... .......... .......... .......... 44% 139M 0s 6600K .......... .......... .......... .......... .......... 45% 195M 0s 6650K .......... .......... .......... .......... .......... 45% 24.9M 0s 6700K .......... .......... .......... .......... .......... 45% 200M 0s 6750K .......... .......... .......... .......... .......... 46% 196M 0s 6800K .......... .......... .......... .......... .......... 46% 146M 0s 6850K .......... .......... .......... .......... .......... 46% 156M 0s 6900K .......... .......... .......... .......... .......... 47% 173M 0s 6950K .......... .......... .......... .......... .......... 47% 20.7M 0s 7000K .......... .......... .......... .......... .......... 47% 194M 0s 7050K .......... .......... .......... .......... .......... 48% 194M 0s 7100K .......... .......... .......... .......... .......... 48% 145M 0s 7150K .......... .......... .......... .......... .......... 48% 168M 0s 7200K .......... .......... .......... .......... .......... 49% 157M 0s 7250K .......... .......... .......... .......... .......... 49% 18.3M 0s 7300K .......... .......... .......... .......... .......... 49% 205M 0s 7350K .......... .......... .......... .......... .......... 50% 195M 0s 7400K .......... .......... .......... .......... .......... 50% 140M 0s 7450K .......... .......... .......... .......... .......... 50% 142M 0s 7500K .......... .......... .......... .......... .......... 51% 202M 0s 7550K .......... .......... .......... .......... .......... 51% 136M 0s 7600K .......... .......... .......... .......... .......... 51% 16.9M 0s 7650K .......... .......... .......... .......... .......... 52% 175M 0s 7700K .......... .......... .......... .......... .......... 52% 190M 0s 7750K .......... .......... .......... .......... .......... 53% 147M 0s 7800K .......... .......... .......... .......... .......... 53% 146M 0s 7850K .......... .......... .......... .......... .......... 53% 180M 0s 7900K .......... .......... .......... .......... .......... 54% 143M 0s 7950K .......... .......... .......... .......... .......... 54% 158M 0s 8000K .......... .......... .......... .......... .......... 54% 15.7M 0s 8050K .......... .......... .......... .......... .......... 55% 177M 0s 8100K .......... .......... .......... .......... .......... 55% 205M 0s 8150K .......... .......... .......... .......... .......... 55% 4.46M 0s 8200K .......... .......... .......... .......... .......... 56% 91.8M 0s 8250K .......... .......... .......... .......... .......... 56% 122M 0s 8300K .......... .......... .......... .......... .......... 56% 123M 0s 8350K .......... .......... .......... .......... .......... 57% 110M 0s 8400K .......... .......... .......... .......... .......... 57% 88.2M 0s 8450K .......... .......... .......... .......... .......... 57% 85.8M 0s 8500K .......... .......... .......... .......... .......... 58% 179M 0s 8550K .......... .......... .......... .......... .......... 58% 137M 0s 8600K .......... .......... .......... .......... .......... 58% 118M 0s 8650K .......... .......... .......... .......... .......... 59% 84.1M 0s 8700K .......... .......... .......... .......... .......... 59% 111M 0s 8750K .......... .......... .......... .......... .......... 59% 173M 0s 8800K .......... .......... .......... .......... .......... 60% 117M 0s 8850K .......... .......... .......... .......... .......... 60% 89.0M 0s 8900K .......... .......... .......... .......... .......... 60% 94.5M 0s 8950K .......... .......... .......... .......... .......... 61% 145M 0s 9000K .......... .......... .......... .......... .......... 61% 208M 0s 9050K .......... .......... .......... .......... .......... 61% 90.9M 0s 9100K .......... .......... .......... .......... .......... 62% 108M 0s 9150K .......... .......... .......... .......... .......... 62% 58.6M 0s 9200K .......... .......... .......... .......... .......... 62% 161M 0s 9250K .......... .......... .......... .......... .......... 63% 140M 0s 9300K .......... .......... .......... .......... .......... 63% 207M 0s 9350K .......... .......... .......... .......... .......... 63% 104M 0s 9400K .......... .......... .......... .......... .......... 64% 143M 0s 9450K .......... .......... .......... .......... .......... 64% 51.3M 0s 9500K .......... .......... .......... .......... .......... 64% 175M 0s 9550K .......... .......... .......... .......... .......... 65% 30.1M 0s 9600K .......... .......... .......... .......... .......... 65% 139M 0s 9650K .......... .......... .......... .......... .......... 65% 196M 0s 9700K .......... .......... .......... .......... .......... 66% 138M 0s 9750K .......... .......... .......... .......... .......... 66% 28.7M 0s 9800K .......... .......... .......... .......... .......... 66% 198M 0s 9850K .......... .......... .......... .......... .......... 67% 154M 0s 9900K .......... .......... .......... .......... .......... 67% 155M 0s 9950K .......... .......... .......... .......... .......... 67% 127M 0s 10000K .......... .......... .......... .......... .......... 68% 190M 0s 10050K .......... .......... .......... .......... .......... 68% 191M 0s 10100K .......... .......... .......... .......... .......... 68% 188M 0s 10150K .......... .......... .......... .......... .......... 69% 183M 0s 10200K .......... .......... .......... .......... .......... 69% 1.16M 0s 10250K .......... .......... .......... .......... .......... 70% 103M 0s 10300K .......... .......... .......... .......... .......... 70% 84.9M 0s 10350K .......... .......... .......... .......... .......... 70% 130M 0s 10400K .......... .......... .......... .......... .......... 71% 145M 0s 10450K .......... .......... .......... .......... .......... 71% 148M 0s 10500K .......... .......... .......... .......... .......... 71% 110M 0s 10550K .......... .......... .......... .......... .......... 72% 73.8M 0s 10600K .......... .......... .......... .......... .......... 72% 193M 0s 10650K .......... .......... .......... .......... .......... 72% 74.7M 0s 10700K .......... .......... .......... .......... .......... 73% 148M 0s 10750K .......... .......... .......... .......... .......... 73% 144M 0s 10800K .......... .......... .......... .......... .......... 73% 73.5M 0s 10850K .......... .......... .......... .......... .......... 74% 129M 0s 10900K .......... .......... .......... .......... .......... 74% 172M 0s 10950K .......... .......... .......... .......... .......... 74% 63.8M 0s 11000K .......... .......... .......... .......... .......... 75% 125M 0s 11050K .......... .......... .......... .......... .......... 75% 133M 0s 11100K .......... .......... .......... .......... .......... 75% 190M 0s 11150K .......... .......... .......... .......... .......... 76% 43.0M 0s 11200K .......... .......... .......... .......... .......... 76% 166M 0s 11250K .......... .......... .......... .......... .......... 76% 135M 0s 11300K .......... .......... .......... .......... .......... 77% 193M 0s 11350K .......... .......... .......... .......... .......... 77% 149M 0s 11400K .......... .......... .......... .......... .......... 77% 160M 0s 11450K .......... .......... .......... .......... .......... 78% 152M 0s 11500K .......... .......... .......... .......... .......... 78% 140M 0s 11550K .......... .......... .......... .......... .......... 78% 21.4M 0s 11600K .......... .......... .......... .......... .......... 79% 180M 0s 11650K .......... .......... .......... .......... .......... 79% 152M 0s 11700K .......... .......... .......... .......... .......... 79% 135M 0s 11750K .......... .......... .......... .......... .......... 80% 175M 0s 11800K .......... .......... .......... .......... .......... 80% 178M 0s 11850K .......... .......... .......... .......... .......... 80% 153M 0s 11900K .......... .......... .......... .......... .......... 81% 151M 0s 11950K .......... .......... .......... .......... .......... 81% 135M 0s 12000K .......... .......... .......... .......... .......... 81% 206M 0s 12050K .......... .......... .......... .......... .......... 82% 186M 0s 12100K .......... .......... .......... .......... .......... 82% 153M 0s 12150K .......... .......... .......... .......... .......... 82% 134M 0s 12200K .......... .......... .......... .......... .......... 83% 180M 0s 12250K .......... .......... .......... .......... .......... 83% 1.30M 0s 12300K .......... .......... .......... .......... .......... 83% 142M 0s 12350K .......... .......... .......... .......... .......... 84% 51.2M 0s 12400K .......... .......... .......... .......... .......... 84% 167M 0s 12450K .......... .......... .......... .......... .......... 84% 124M 0s 12500K .......... .......... .......... .......... .......... 85% 108M 0s 12550K .......... .......... .......... .......... .......... 85% 86.6M 0s 12600K .......... .......... .......... .......... .......... 85% 150M 0s 12650K .......... .......... .......... .......... .......... 86% 88.3M 0s 12700K .......... .......... .......... .......... .......... 86% 192M 0s 12750K .......... .......... .......... .......... .......... 86% 120M 0s 12800K .......... .......... .......... .......... .......... 87% 109M 0s 12850K .......... .......... .......... .......... .......... 87% 99.0M 0s 12900K .......... .......... .......... .......... .......... 88% 107M 0s 12950K .......... .......... .......... .......... .......... 88% 114M 0s 13000K .......... .......... .......... .......... .......... 88% 158M 0s 13050K .......... .......... .......... .......... .......... 89% 96.9M 0s 13100K .......... .......... .......... .......... .......... 89% 88.1M 0s 13150K .......... .......... .......... .......... .......... 89% 60.6M 0s 13200K .......... .......... .......... .......... .......... 90% 164M 0s 13250K .......... .......... .......... .......... .......... 90% 151M 0s 13300K .......... .......... .......... .......... .......... 90% 185M 0s 13350K .......... .......... .......... .......... .......... 91% 138M 0s 13400K .......... .......... .......... .......... .......... 91% 100M 0s 13450K .......... .......... .......... .......... .......... 91% 42.2M 0s 13500K .......... .......... .......... .......... .......... 92% 148M 0s 13550K .......... .......... .......... .......... .......... 92% 151M 0s 13600K .......... .......... .......... .......... .......... 92% 149M 0s 13650K .......... .......... .......... .......... .......... 93% 154M 0s 13700K .......... .......... .......... .......... .......... 93% 160M 0s 13750K .......... .......... .......... .......... .......... 93% 142M 0s 13800K .......... .......... .......... .......... .......... 94% 203M 0s 13850K .......... .......... .......... .......... .......... 94% 125M 0s 13900K .......... .......... .......... .......... .......... 94% 20.0M 0s 13950K .......... .......... .......... .......... .......... 95% 176M 0s 14000K .......... .......... .......... .......... .......... 95% 207M 0s 14050K .......... .......... .......... .......... .......... 95% 34.0M 0s 14100K .......... .......... .......... .......... .......... 96% 142M 0s 14150K .......... .......... .......... .......... .......... 96% 176M 0s 14200K .......... .......... .......... .......... .......... 96% 143M 0s 14250K .......... .......... .......... .......... .......... 97% 190M 0s 14300K .......... .......... .......... .......... .......... 97% 149M 0s 14350K .......... .......... .......... .......... .......... 97% 17.9M 0s 14400K .......... .......... .......... .......... .......... 98% 195M 0s 14450K .......... .......... .......... .......... .......... 98% 175M 0s 14500K .......... .......... .......... .......... .......... 98% 205M 0s 14550K .......... .......... .......... .......... .......... 99% 176M 0s 14600K .......... .......... .......... .......... .......... 99% 204M 0s 14650K .......... .......... .......... .......... .......... 99% 180M 0s 14700K .......... ... 100% 195M=0.3s 2024-03-17 23:49:38 (43.9 MB/s) - ‘lammps-potentials-8snt-v1.zip’ saved [15066136/15066136] Archive: ./lammps-potentials-8snt-v1.zip inflating: potentials/Ag_u3.eam inflating: potentials/AlCu.adp inflating: potentials/AlCu.bop.table inflating: potentials/AlCu.eam.alloy inflating: potentials/AlCuH.bop.table inflating: potentials/AlFe_mm.eam.fs inflating: potentials/AlO.eam.alloy inflating: potentials/AlO.streitz inflating: potentials/AlSiMgCuFe.meam inflating: potentials/Al_Batra_2019.agni inflating: potentials/Al_jnp.eam inflating: potentials/Al_jpc.agni inflating: potentials/Al_mm.eam.fs inflating: potentials/Al_prb.agni inflating: potentials/Al_zhou.eam.alloy inflating: potentials/Au_u3.eam inflating: potentials/BN.extep inflating: potentials/BNC.tersoff inflating: potentials/BNCH-old.ILP inflating: potentials/BNCH.ILP inflating: potentials/BNC_MBD_bulk.ILP inflating: potentials/BNC_TS_bulk.ILP inflating: potentials/Bi.meam inflating: potentials/C.drip inflating: potentials/C.lcbop inflating: potentials/CC.KC inflating: potentials/CC.KC-full inflating: potentials/CC.Lebedeva inflating: potentials/CCu_v2.bop.table inflating: potentials/CH.KC inflating: potentials/CH.airebo inflating: potentials/CH.airebo-m inflating: potentials/CH.rebo inflating: potentials/CHAu.ILP inflating: potentials/CH_taper.KC inflating: potentials/COH.DMC.aip.water.2dm inflating: potentials/COH.aip.water.2dm inflating: potentials/C_SNAP_2021.10.15.quadratic.snapcoeff inflating: potentials/C_SNAP_2021.10.15.quadratic.snapparam inflating: potentials/CdTe.bop.table inflating: potentials/CdTe.sw inflating: potentials/CdTeSe.bop.table inflating: potentials/CdTeZn.bop.table inflating: potentials/CdTeZnSeHgS0.sw inflating: potentials/CdZnTe_v1.bop.table inflating: potentials/CdZnTe_v2.bop.table inflating: potentials/CoAl.eam.alloy inflating: potentials/Cu-PBE-core-rep.ace inflating: potentials/Cu.meam inflating: potentials/Cu.nn.mliap.model inflating: potentials/Cu.snap.mliap.descriptor inflating: potentials/CuH.bop.table inflating: potentials/CuNi.eam.alloy inflating: potentials/CuTa.eam.alloy inflating: potentials/CuTa_eam.poly inflating: potentials/CuZr_mm.eam.fs inflating: potentials/Cu_Huan_2019_fp1.agni inflating: potentials/Cu_Huan_2019_fp2.agni inflating: potentials/Cu_Zuo_JPCA2020.quadratic.snap inflating: potentials/Cu_Zuo_JPCA2020.quadratic.snapcoeff inflating: potentials/Cu_Zuo_JPCA2020.quadratic.snapparam inflating: potentials/Cu_Zuo_JPCA2020.snap inflating: potentials/Cu_Zuo_JPCA2020.snapcoeff inflating: potentials/Cu_Zuo_JPCA2020.snapparam inflating: potentials/Cu_mishin1.eam.alloy inflating: potentials/Cu_smf7.eam inflating: potentials/Cu_u3.eam inflating: potentials/Cu_u6.eam inflating: potentials/Cu_zhou.eam.alloy inflating: potentials/FeCH_BOP_I.poly inflating: potentials/FeCH_BOP_II.poly inflating: potentials/FeCr.cdeam inflating: potentials/FeP_mm.eam.fs inflating: potentials/Fe_mm.eam.fs inflating: potentials/GaAs.bop.table inflating: potentials/GaN.sw inflating: potentials/GaN.tersoff inflating: potentials/GaN_sw.poly inflating: potentials/GaN_tersoff.poly inflating: potentials/Ge.tersoff inflating: potentials/Ge_Zuo_JPCA2020.quadratic.snap inflating: potentials/Ge_Zuo_JPCA2020.quadratic.snapcoeff inflating: potentials/Ge_Zuo_JPCA2020.quadratic.snapparam inflating: potentials/Ge_Zuo_JPCA2020.snap inflating: potentials/Ge_Zuo_JPCA2020.snapcoeff inflating: potentials/Ge_Zuo_JPCA2020.snapparam inflating: potentials/HGa.msmeam inflating: potentials/He_He_JW2013.table inflating: potentials/InP.vashishta inflating: potentials/InP_JCPA2020.mliap inflating: potentials/InP_JCPA2020.mliap.descriptor inflating: potentials/InP_JCPA2020.mliap.model inflating: potentials/InP_JCPA2020.snap inflating: potentials/InP_JCPA2020.snapcoeff inflating: potentials/InP_JCPA2020.snapparam inflating: potentials/Li_Zuo_JPCA2020.quadratic.snap inflating: potentials/Li_Zuo_JPCA2020.quadratic.snapcoeff inflating: potentials/Li_Zuo_JPCA2020.quadratic.snapparam inflating: potentials/Li_Zuo_JPCA2020.snap inflating: potentials/Li_Zuo_JPCA2020.snapcoeff inflating: potentials/Li_Zuo_JPCA2020.snapparam inflating: potentials/MOH.nb3b.harmonic inflating: potentials/MgAl.rann inflating: potentials/Mg_mm.eam.fs inflating: potentials/Mo5.2.mgpt.README inflating: potentials/Mo5.2.mgpt.parmin inflating: potentials/Mo5.2.mgpt.potin inflating: potentials/MoS2.ILP inflating: potentials/Mo_Chen_PRM2017.snap inflating: potentials/Mo_Chen_PRM2017.snapcoeff inflating: potentials/Mo_Chen_PRM2017.snapparam inflating: potentials/Mo_Zuo_JPCA2020.quadratic.snap inflating: potentials/Mo_Zuo_JPCA2020.quadratic.snapcoeff inflating: potentials/Mo_Zuo_JPCA2020.quadratic.snapparam inflating: potentials/Mo_Zuo_JPCA2020.snap inflating: potentials/Mo_Zuo_JPCA2020.snapcoeff inflating: potentials/Mo_Zuo_JPCA2020.snapparam inflating: potentials/Ni.adp inflating: potentials/Ni.meam inflating: potentials/NiAlH_jea.eam.alloy inflating: potentials/NiAlH_jea.eam.fs inflating: potentials/Ni_Mo.mliap.descriptor inflating: potentials/Ni_Mo.mliap.model inflating: potentials/Ni_Zuo_JPCA2020.quadratic.snap inflating: potentials/Ni_Zuo_JPCA2020.quadratic.snapcoeff inflating: potentials/Ni_Zuo_JPCA2020.quadratic.snapparam inflating: potentials/Ni_Zuo_JPCA2020.snap inflating: potentials/Ni_Zuo_JPCA2020.snapcoeff inflating: potentials/Ni_Zuo_JPCA2020.snapparam inflating: potentials/Ni_smf7.eam inflating: potentials/Ni_u3.eam inflating: potentials/PdHHe.eam.he inflating: potentials/Pd_u3.eam inflating: potentials/Pt_Chapman_2020.agni inflating: potentials/Pt_u3.eam inflating: potentials/README inflating: potentials/README.reax inflating: potentials/Si.b.meam.sw.spline inflating: potentials/Si.edip inflating: potentials/Si.nn.mliap.descriptor inflating: potentials/Si.nn.mliap.model inflating: potentials/Si.sw inflating: potentials/Si.tersoff inflating: potentials/Si.tersoff.mod inflating: potentials/Si.tersoff.modc inflating: potentials/SiC.edip inflating: potentials/SiC.gw inflating: potentials/SiC.gw.zbl inflating: potentials/SiC.meam inflating: potentials/SiC.tersoff inflating: potentials/SiC.tersoff.zbl inflating: potentials/SiC.vashishta inflating: potentials/SiCGe.tersoff inflating: potentials/SiC_1989.tersoff inflating: potentials/SiC_1990.tersoff inflating: potentials/SiC_1994.tersoff inflating: potentials/SiC_Erhart-Albe.tersoff inflating: potentials/SiGeH.sw.quip inflating: potentials/SiO.1990.vashishta inflating: potentials/SiO.1994.vashishta inflating: potentials/SiO.1997.vashishta inflating: potentials/SiO.tersoff inflating: potentials/Si_1.meam.spline inflating: potentials/Si_2.meam.spline inflating: potentials/Si_Zuo_JPCA2020.quadratic.snap inflating: potentials/Si_Zuo_JPCA2020.quadratic.snapcoeff inflating: potentials/Si_Zuo_JPCA2020.quadratic.snapparam inflating: potentials/Si_Zuo_JPCA2020.snap inflating: potentials/Si_Zuo_JPCA2020.snapcoeff inflating: potentials/Si_Zuo_JPCA2020.snapparam inflating: potentials/Ta06A.mliap inflating: potentials/Ta06A.mliap.descriptor inflating: potentials/Ta06A.mliap.model inflating: potentials/Ta06A.nn.mliap inflating: potentials/Ta06A.nn.mliap.model inflating: potentials/Ta06A.pytorch.mliap inflating: potentials/Ta06A.snap inflating: potentials/Ta06A.snapcoeff inflating: potentials/Ta06A.snapparam inflating: potentials/Ta4.mgpt.README inflating: potentials/Ta4.mgpt.parmin inflating: potentials/Ta4.mgpt.potin inflating: potentials/Ta6.8x.mgpt.README inflating: potentials/Ta6.8x.mgpt.parmin inflating: potentials/Ta6.8x.mgpt.potin inflating: potentials/Ta_coeff.pod inflating: potentials/Ta_param.pod inflating: potentials/Ti.meam.spline inflating: potentials/Ti.meam.sw.spline inflating: potentials/Ti.rann inflating: potentials/TiO.meam.spline inflating: potentials/TiZr_2.rann inflating: potentials/TlBr_msw.poly inflating: potentials/V6.1.mgpt.README inflating: potentials/V6.1.mgpt.parmin inflating: potentials/V6.1.mgpt.potin inflating: potentials/VFe_mm.eam.fs inflating: potentials/W.quadratic.mliap inflating: potentials/W.quadratic.mliap.descriptor inflating: potentials/W.quadratic.mliap.model inflating: potentials/WBe_Wood_PRB2019.mliap inflating: potentials/WBe_Wood_PRB2019.mliap.descriptor inflating: potentials/WBe_Wood_PRB2019.mliap.model inflating: potentials/WBe_Wood_PRB2019.snap inflating: potentials/WBe_Wood_PRB2019.snapcoeff inflating: potentials/WBe_Wood_PRB2019.snapparam
inflating: potentials/WL.meam inflating: potentials/W_2940_2017_2.snap inflating: potentials/W_2940_2017_2.snapcoeff inflating: potentials/W_2940_2017_2.snapparam inflating: potentials/W_2940_2017_2_He_JW2013.snap inflating: potentials/W_He_JW2013.table inflating: potentials/W_zhou.eam.alloy inflating: potentials/Zn.rann inflating: potentials/Zr.rann inflating: potentials/Zr_mm.eam.fs inflating: potentials/acks2_ff.water inflating: potentials/charmm22.cmap inflating: potentials/charmm36.cmap inflating: potentials/ci-reaxFF_ZBL.dat inflating: potentials/ffield.ci-reax.CH inflating: potentials/ffield.comb inflating: potentials/ffield.comb3 inflating: potentials/ffield.eim inflating: potentials/ffield.reax.AB inflating: potentials/ffield.reax.AuO inflating: potentials/ffield.reax.FC inflating: potentials/ffield.reax.Fe_O_C_H inflating: potentials/ffield.reax.V_O_C_H inflating: potentials/ffield.reax.ZnOH inflating: potentials/ffield.reax.budzien inflating: potentials/ffield.reax.cho inflating: potentials/ffield.reax.lg inflating: potentials/ffield.reax.mattsson inflating: potentials/ffield.reax.rdx inflating: potentials/ffield.smtbq.Al inflating: potentials/ffield.smtbq.Al2O3 inflating: potentials/ffield.smtbq.TiO2 inflating: potentials/lib.comb3 inflating: potentials/library.meam inflating: potentials/library.msmeam inflating: potentials/tmd.sw.mod
代码
文本
[28]
%%writefile in.CuEAM
units metal
boundary p p p
atom_style atomic
#---------- setup loop -----------------
variable i loop 40
variable x equal 3.40+0.01*$i
lattice fcc $x
region box block 0 1 0 1 0 1
create_box 1 box
create_atoms 1 box
mass 1 64
#---------- use Cu EAM parameter----------
pair_style eam
pair_coeff * * ./potentials/Cu_u3.eam Cu
variable v equal ($x)^3
variable n equal count(all)
variable P equal pe
#-------------- run ----------------------
run 0
print "Cohesive Energy of Cu v = $v x= $x E = $P "
clear
next i
jump SELF
Overwriting in.CuEAM
代码
文本
[29]
%%capture
!OMP_NUM_THREADS=2 lmp -i in.CuEAM
代码
文本
[30]
!grep 'Cohesive' log.lammps
代码
文本
[31]
# Read the file and search for lines containing the pattern "Cohesive Energy of Cu v = $v x= $x E = $P"
import re
# Initialize list to hold the matching lines
matching_lines = []
# Define the regex pattern for capturing v and x and E values
pattern = re.compile(r"Cohesive Energy of Cu v = ([\d\.-]+) x= ([\d\.-]+) E = ([\d\.-]+)")
# Read the file and search for the pattern
with open('./log.lammps', 'r') as file:
for line in file:
match = pattern.search(line)
if match:
v_value = float(match.group(1))
x_value = float(match.group(2))
E_value = float(match.group(3))
matching_lines.append((v_value,x_value,E_value))
# Show some of the matching lines
matching_lines[:40]
[]
代码
文本
[17]
# Write the extracted v, x, and E values to a CSV file
with open('lj_EAM.csv', 'w') as f:
f.write("v,x,E\n") # Write header
for v, x, E in matching_lines:
f.write(f"{v},{x},{E}\n")
代码
文本
[18]
import pandas as pd
import numpy as np
# 读取数据(之前存储的csv文件):
df = pd.read_csv('lj_EAM.csv')
v = np.array(df['v'])
x = np.array(df['x'])
E = np.array(df['E'])
# 先做一次多项式拟合,根据以上多项式拟合的结果设置初始猜测解X0:
a, b, c = np.polyfit(v, E, 2)
v0 = -b / (2 * a)
e0 = a * v0 ** 2 + b * v0 + c
b0 = 2 * a * v0
bP = 3.5
x0 = [e0, b0, bP, v0]
def Murnaghan(parameters, vol):
E0 = parameters[0]
B0 = parameters[1]
BP = parameters[2]
V0 = parameters[3]
E = E0 + B0 * vol / BP * (((V0 / vol) ** BP) / (BP - 1) + 1) - V0 * B0 / (BP - 1.)
return E
# 定义误差(优化目标)
def residual(pars, y, x):
err = y - Murnaghan(pars, x)
return err
# 进行拟合:
from scipy.optimize import leastsq
murnpars, ier = leastsq(residual, x0, args=(E, v))
# 输出结果
print('Bulk Modulus:', murnpars[1])
print('Lattice constant:', murnpars[3] ** (1 / 3))
# 拟合效果可视化:
from matplotlib import pyplot as plt
v_mesh = np.linspace(np.min(v), np.max(v), 1000)
plt.scatter(v, E, 40)
plt.plot(v_mesh, Murnaghan(murnpars, v_mesh))
plt.ylabel('Energy')
plt.xlabel('Volume')
plt.show()
--------------------------------------------------------------------------- TypeError Traceback (most recent call last) Cell In[18], line 11 8 E = np.array(df['E']) 10 # 先做一次多项式拟合,根据以上多项式拟合的结果设置初始猜测解X0: ---> 11 a, b, c = np.polyfit(v, E, 2) 12 v0 = -b / (2 * a) 13 e0 = a * v0 ** 2 + b * v0 + c File /opt/deepmd-kit-3.0.0/lib/python3.10/site-packages/numpy/lib/polynomial.py:639, in polyfit(x, y, deg, rcond, full, w, cov) 637 raise TypeError("expected 1D vector for x") 638 if x.size == 0: --> 639 raise TypeError("expected non-empty vector for x") 640 if y.ndim < 1 or y.ndim > 2: 641 raise TypeError("expected 1D or 2D array for y") TypeError: expected non-empty vector for x
代码
文本
点个赞吧
推荐阅读
公开
王月昊-第6天-2403-计算材料学实战Rigel
发布于 2024-03-15
公开
王月昊-第5天-2403-计算材料学实战Rigel
发布于 2024-03-13
1 赞