Bohrium
robot
新建

空间站广场

论文
Notebooks
比赛
课程
Apps
我的主页
我的Notebooks
我的论文库
我的足迹

我的工作空间

任务
节点
文件
数据集
镜像
项目
数据库
公开
王月昊-第7天-2403-计算材料学实战
2403-计算材料学实战
2403-计算材料学实战
Rigel
发布于 2024-03-16
推荐镜像 :DeePMD-kit:3.0.0a0-cuda12.1
推荐机型 :c2_m4_cpu
组队共读活动打卡Day7(3月15日,周五)
▶ 今日学习内容:LAMMPS力学性质计算实战2-体模量(对应视频 11 部分)。
▶ 课后任务:
Cu体积模量计算脚本
LJ势
1. 二次多项式拟合
2. 三次多项式拟合
3. 用Birch-Murnaghan方程拟合
EAM势

组队共读活动打卡Day7(3月15日,周五)

▶ 今日学习内容:LAMMPS力学性质计算实战2-体模量(对应视频 11 部分)。

▶ 课后任务:

第6个 LAMMPS程序:不断调整晶格常数大小,用lammps计算出在平衡距离附近时,Cu晶体能量与其体积的关系,在此之上拟合出体弹性模量数据。分别尝试使用二次、三次多项式和BM方程进行拟合。分别考虑 LJ 势函数和 EAM 势函数的情况。尝试撰写Notebook,分析哪种结构最稳定,并在报告中提供LAMMPS脚本及分析方法。

代码
文本

Cu体积模量计算脚本

LJ势

代码
文本
[1]
%%writefile in.CuLJ

units metal
boundary p p p
atom_style atomic
#---------- setup loop -----------------
variable i loop 40
variable x equal 3.40+0.01*$i
lattice fcc $x
region box block 0 1 0 1 0 1
create_box 1 box
create_atoms 1 box
mass 1 64
#---------- use Cu LJ parameter----------
pair_style lj/cut 10.0
pair_coeff 1 1 0.40933 2.338
variable v equal ($x)^3
variable n equal count(all)
variable P equal pe
#-------------- run ----------------------
run 0
print "Cohesive Energy of Cu v = $v x= $x E = $P "
clear
next i
jump SELF
Writing in.CuLJ
代码
文本
[2]
%%capture
!OMP_NUM_THREADS=2 lmp -i in.CuLJ
代码
文本
[3]
!grep 'Cohesive' log.lammps
print "Cohesive Energy of Cu v = $v x= $x E = $P "
Cohesive Energy of Cu v = 39.651821 x= 3.41 E = -11.6743276227989 
print "Cohesive Energy of Cu v = $v x= $x E = $P "
Cohesive Energy of Cu v = 40.001688 x= 3.42 E = -11.9405476050061 
print "Cohesive Energy of Cu v = $v x= $x E = $P "
Cohesive Energy of Cu v = 40.353607 x= 3.43 E = -12.1595640975458 
print "Cohesive Energy of Cu v = $v x= $x E = $P "
Cohesive Energy of Cu v = 40.707584 x= 3.44 E = -12.3842526979336 
print "Cohesive Energy of Cu v = $v x= $x E = $P "
Cohesive Energy of Cu v = 41.063625 x= 3.45 E = -12.5895372366665 
print "Cohesive Energy of Cu v = $v x= $x E = $P "
Cohesive Energy of Cu v = 41.421736 x= 3.46 E = -12.7764125325894 
print "Cohesive Energy of Cu v = $v x= $x E = $P "
Cohesive Energy of Cu v = 41.781923 x= 3.47 E = -12.9458260014581 
print "Cohesive Energy of Cu v = $v x= $x E = $P "
Cohesive Energy of Cu v = 42.144192 x= 3.48 E = -13.0986799313477 
print "Cohesive Energy of Cu v = $v x= $x E = $P "
Cohesive Energy of Cu v = 42.508549 x= 3.49 E = -13.2358336452587 
print "Cohesive Energy of Cu v = $v x= $x E = $P "
Cohesive Energy of Cu v = 42.875 x= 3.5 E = -13.3581055567528 
print "Cohesive Energy of Cu v = $v x= $x E = $P "
Cohesive Energy of Cu v = 43.243551 x= 3.51 E = -13.4662751241234 
print "Cohesive Energy of Cu v = $v x= $x E = $P "
Cohesive Energy of Cu v = 43.614208 x= 3.52 E = -13.5610847083218 
print "Cohesive Energy of Cu v = $v x= $x E = $P "
Cohesive Energy of Cu v = 43.986977 x= 3.53 E = -13.6432413395693 
print "Cohesive Energy of Cu v = $v x= $x E = $P "
Cohesive Energy of Cu v = 44.361864 x= 3.54 E = -13.7070496808943 
print "Cohesive Energy of Cu v = $v x= $x E = $P "
Cohesive Energy of Cu v = 44.738875 x= 3.55 E = -13.7659953596674 
print "Cohesive Energy of Cu v = $v x= $x E = $P "
Cohesive Energy of Cu v = 45.118016 x= 3.56 E = -13.8142114984977 
print "Cohesive Energy of Cu v = $v x= $x E = $P "
Cohesive Energy of Cu v = 45.499293 x= 3.57 E = -13.852279849293 
print "Cohesive Energy of Cu v = $v x= $x E = $P "
Cohesive Energy of Cu v = 45.882712 x= 3.58 E = -13.8807544504762 
print "Cohesive Energy of Cu v = $v x= $x E = $P "
Cohesive Energy of Cu v = 46.268279 x= 3.59 E = -13.9001629355792 
print "Cohesive Energy of Cu v = $v x= $x E = $P "
Cohesive Energy of Cu v = 46.656 x= 3.6 E = -13.9110077784364 
print "Cohesive Energy of Cu v = $v x= $x E = $P "
Cohesive Energy of Cu v = 47.045881 x= 3.61 E = -13.9137674781707 
print "Cohesive Energy of Cu v = $v x= $x E = $P "
Cohesive Energy of Cu v = 47.437928 x= 3.62 E = -13.9088976869966 
print "Cohesive Energy of Cu v = $v x= $x E = $P "
Cohesive Energy of Cu v = 47.832147 x= 3.63 E = -13.8968322836988 
print "Cohesive Energy of Cu v = $v x= $x E = $P "
Cohesive Energy of Cu v = 48.228544 x= 3.64 E = -13.8779843955076 
print "Cohesive Energy of Cu v = $v x= $x E = $P "
Cohesive Energy of Cu v = 48.627125 x= 3.65 E = -13.8527473709409 
print "Cohesive Energy of Cu v = $v x= $x E = $P "
Cohesive Energy of Cu v = 49.027896 x= 3.66 E = -13.7961834075309 
print "Cohesive Energy of Cu v = $v x= $x E = $P "
Cohesive Energy of Cu v = 49.430863 x= 3.67 E = -13.759684579032 
print "Cohesive Energy of Cu v = $v x= $x E = $P "
Cohesive Energy of Cu v = 49.836032 x= 3.68 E = -13.7178592687278 
print "Cohesive Energy of Cu v = $v x= $x E = $P "
Cohesive Energy of Cu v = 50.243409 x= 3.69 E = -13.6710307078911 
print "Cohesive Energy of Cu v = $v x= $x E = $P "
Cohesive Energy of Cu v = 50.653 x= 3.7 E = -13.6195065548619 
print "Cohesive Energy of Cu v = $v x= $x E = $P "
Cohesive Energy of Cu v = 51.064811 x= 3.71 E = -13.5635796208348 
print "Cohesive Energy of Cu v = $v x= $x E = $P "
Cohesive Energy of Cu v = 51.478848 x= 3.72 E = -13.5035285612586 
print "Cohesive Energy of Cu v = $v x= $x E = $P "
Cohesive Energy of Cu v = 51.895117 x= 3.73 E = -13.4396185345301 
print "Cohesive Energy of Cu v = $v x= $x E = $P "
Cohesive Energy of Cu v = 52.313624 x= 3.74 E = -13.3721018295858 
print "Cohesive Energy of Cu v = $v x= $x E = $P "
Cohesive Energy of Cu v = 52.734375 x= 3.75 E = -13.3012184639042 
print "Cohesive Energy of Cu v = $v x= $x E = $P "
Cohesive Energy of Cu v = 53.157376 x= 3.76 E = -13.2271967533648 
print "Cohesive Energy of Cu v = $v x= $x E = $P "
Cohesive Energy of Cu v = 53.582633 x= 3.77 E = -13.1502538553272 
print "Cohesive Energy of Cu v = $v x= $x E = $P "
Cohesive Energy of Cu v = 54.010152 x= 3.78 E = -13.0705962862321 
print "Cohesive Energy of Cu v = $v x= $x E = $P "
Cohesive Energy of Cu v = 54.439939 x= 3.79 E = -12.9884204149546 
print "Cohesive Energy of Cu v = $v x= $x E = $P "
Cohesive Energy of Cu v = 54.872 x= 3.8 E = -12.9039129330838 
代码
文本
[4]
# Read the file and search for lines containing the pattern "Cohesive Energy of Cu v = $v x= $x E = $P"
import re

# Initialize list to hold the matching lines
matching_lines = []

# Define the regex pattern for capturing v and x and E values
pattern = re.compile(r"Cohesive Energy of Cu v = ([\d\.-]+) x= ([\d\.-]+) E = ([\d\.-]+)")

# Read the file and search for the pattern
with open('./log.lammps', 'r') as file:
for line in file:
match = pattern.search(line)
if match:
v_value = float(match.group(1))
x_value = float(match.group(2))
E_value = float(match.group(3))
matching_lines.append((v_value,x_value,E_value))

# Show some of the matching lines
matching_lines[:40]
[(39.651821, 3.41, -11.6743276227989),
 (40.001688, 3.42, -11.9405476050061),
 (40.353607, 3.43, -12.1595640975458),
 (40.707584, 3.44, -12.3842526979336),
 (41.063625, 3.45, -12.5895372366665),
 (41.421736, 3.46, -12.7764125325894),
 (41.781923, 3.47, -12.9458260014581),
 (42.144192, 3.48, -13.0986799313477),
 (42.508549, 3.49, -13.2358336452587),
 (42.875, 3.5, -13.3581055567528),
 (43.243551, 3.51, -13.4662751241234),
 (43.614208, 3.52, -13.5610847083218),
 (43.986977, 3.53, -13.6432413395693),
 (44.361864, 3.54, -13.7070496808943),
 (44.738875, 3.55, -13.7659953596674),
 (45.118016, 3.56, -13.8142114984977),
 (45.499293, 3.57, -13.852279849293),
 (45.882712, 3.58, -13.8807544504762),
 (46.268279, 3.59, -13.9001629355792),
 (46.656, 3.6, -13.9110077784364),
 (47.045881, 3.61, -13.9137674781707),
 (47.437928, 3.62, -13.9088976869966),
 (47.832147, 3.63, -13.8968322836988),
 (48.228544, 3.64, -13.8779843955076),
 (48.627125, 3.65, -13.8527473709409),
 (49.027896, 3.66, -13.7961834075309),
 (49.430863, 3.67, -13.759684579032),
 (49.836032, 3.68, -13.7178592687278),
 (50.243409, 3.69, -13.6710307078911),
 (50.653, 3.7, -13.6195065548619),
 (51.064811, 3.71, -13.5635796208348),
 (51.478848, 3.72, -13.5035285612586),
 (51.895117, 3.73, -13.4396185345301),
 (52.313624, 3.74, -13.3721018295858),
 (52.734375, 3.75, -13.3012184639042),
 (53.157376, 3.76, -13.2271967533648),
 (53.582633, 3.77, -13.1502538553272),
 (54.010152, 3.78, -13.0705962862321),
 (54.439939, 3.79, -12.9884204149546),
 (54.872, 3.8, -12.9039129330838)]
代码
文本
[5]
# Write the extracted v, x, and E values to a CSV file
with open('lj_Cu.csv', 'w') as f:
f.write("v,x,E\n") # Write header
for v, x, E in matching_lines:
f.write(f"{v},{x},{E}\n")
代码
文本

1. 二次多项式拟合

代码
文本
[6]
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
# 读取数据(之前存储的csv文件):
filename = "lj_Cu.csv"
DataFrame = pd.read_csv(filename)
lat = np.array(DataFrame['v'])
ene = np.array(DataFrame['E'])
# 用二次函数拟合:
a,b,c = np.polyfit(lat,ene,2)
mesh = np.linspace(np.min(lat),np.max(lat),1000)
opt_lat = -b/(2*a)
Emin = np.polyval([a,b,c], opt_lat)
print("a,b,c =",a,b,c)
print("Emin =",Emin,"opt_lat =",opt_lat)

# 数据可视化:
plt.scatter(lat, ene, 10)
plt.plot(mesh, a*mesh**2+b*mesh+c)
plt.xlabel('Volume')
plt.ylabel('Energy')
plt.show()
a,b,c = 0.027859136511323872 -2.677008042125913 50.35779796262389
Emin = -13.951195019749292 opt_lat = 48.04542382420561
代码
文本

2. 三次多项式拟合

代码
文本
[7]
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

# 读取数据(之前存储的csv文件):
filename = "lj_Cu.csv"
DataFrame = pd.read_csv(filename)
lat = np.array(DataFrame['v'])
ene = np.array(DataFrame['E'])

# 用三次函数拟合:
a, b, c, d = np.polyfit(lat, ene, 3)
mesh = np.linspace(np.min(lat), np.max(lat), 1000)
opt_lat = -b / (3 * a) # 三次函数极小值
Emin = np.polyval([a, b, c, d], opt_lat)
print("a, b, c, d =", a, b, c, d)
print("Emin =", Emin, "opt_lat =", opt_lat)

# 数据可视化:
plt.scatter(lat, ene, 10)
plt.plot(mesh, a * mesh**3 + b * mesh**2 + c * mesh + d)
plt.xlabel('Volume')
plt.ylabel('Energy')
plt.show()
a, b, c, d = -0.0017381601310075745 0.27402339262618536 -14.234388038073991 230.2287757280661
Emin = -13.3084620063795 opt_lat = 52.55046945671606
代码
文本

3. 用Birch-Murnaghan方程拟合

代码
文本
[8]
import pandas as pd
import numpy as np

# 读取数据(之前存储的csv文件):
df = pd.read_csv('lj_Cu.csv') # 修正文件名为正确的 'lj_Cu.csv'
v = np.array(df['v'])
x = np.array(df['x'])
E = np.array(df['E'])

# 先做一次多项式拟合,根据以上多项式拟合的结果设置初始猜测解X0:
a, b, c = np.polyfit(v, E, 2)
v0 = -b / (2 * a)
e0 = a * v0 ** 2 + b * v0 + c
b0 = 2 * a * v0
bP = 3.5
x0 = [e0, b0, bP, v0]

def Murnaghan(parameters, vol):
E0 = parameters[0]
B0 = parameters[1]
BP = parameters[2]
V0 = parameters[3]
E = E0 + B0 * vol / BP * (((V0 / vol) ** BP) / (BP - 1) + 1) - V0 * B0 / (BP - 1.)
return E

# 定义误差(优化目标)
def residual(pars, y, x):
err = y - Murnaghan(pars, x)
return err

# 进行拟合:
from scipy.optimize import leastsq

murnpars, ier = leastsq(residual, x0, args=(E, v))

# 输出结果
print('Bulk Modulus:', murnpars[1])
print('Lattice constant:', murnpars[3] ** (1 / 3))

# 拟合效果可视化:
from matplotlib import pyplot as plt

v_mesh = np.linspace(np.min(v), np.max(v), 1000)
plt.scatter(v, E, 40)
plt.plot(v_mesh, Murnaghan(murnpars, v_mesh))
plt.ylabel('Energy')
plt.xlabel('Volume')
plt.show()
Bulk Modulus: 2.3208178189964985
Lattice constant: 3.6078449224812617
代码
文本

Birch-Murnaghan方程因为更接近于物理实际,所以得到的结果与解析解最为接 近;体模量的拟合,应优先使用Birch-Murnaghan方程。

代码
文本

EAM势

代码
文本

下载EAM势

代码
文本
[19]
%%bash
## 这行命令可以下载 lammps安装包中,potentials文件夹下的所有势函数,用于后续eam势函数的导入
wget https://bohrium-api.dp.tech/ds-dl/lammps-potentials-8snt-v1.zip
unzip -o ./lammps-potentials-8snt-v1.zip
--2024-03-17 23:49:38--  https://bohrium-api.dp.tech/ds-dl/lammps-potentials-8snt-v1.zip
Resolving ga.dp.tech (ga.dp.tech)... 10.255.254.7, 10.255.254.37, 10.255.254.18
Connecting to ga.dp.tech (ga.dp.tech)|10.255.254.7|:8118... connected.
Proxy request sent, awaiting response... 307 Temporary Redirect
Location: https://dataset-bohr-storage.dp.tech/lbg%2Fdataset%2Fzip%2Fdataset_tiefblue_bohr_11303_lammps-potentials-8snt_v105264.zip?Expires=1710726578&OSSAccessKeyId=LTAI5t8SinfkteepM4WuAEqc&Signature=62TpLNEYxmLTvp%2FDbVwbk%2F8TINY%3D [following]
--2024-03-17 23:49:38--  https://dataset-bohr-storage.dp.tech/lbg%2Fdataset%2Fzip%2Fdataset_tiefblue_bohr_11303_lammps-potentials-8snt_v105264.zip?Expires=1710726578&OSSAccessKeyId=LTAI5t8SinfkteepM4WuAEqc&Signature=62TpLNEYxmLTvp%2FDbVwbk%2F8TINY%3D
Connecting to ga.dp.tech (ga.dp.tech)|10.255.254.7|:8118... connected.
Proxy request sent, awaiting response... 200 OK
Length: 15066136 (14M) [application/zip]
Saving to: ‘lammps-potentials-8snt-v1.zip’

     0K .......... .......... .......... .......... ..........  0% 25.8M 1s
    50K .......... .......... .......... .......... ..........  0% 31.9M 0s
   100K .......... .......... .......... .......... ..........  1% 50.9M 0s
   150K .......... .......... .......... .......... ..........  1% 35.6M 0s
   200K .......... .......... .......... .......... ..........  1% 45.7M 0s
   250K .......... .......... .......... .......... ..........  2% 45.6M 0s
   300K .......... .......... .......... .......... ..........  2% 8.40M 1s
   350K .......... .......... .......... .......... ..........  2%  138M 1s
   400K .......... .......... .......... .......... ..........  3%  204M 0s
   450K .......... .......... .......... .......... ..........  3%  131M 0s
   500K .......... .......... .......... .......... ..........  3%  173M 0s
   550K .......... .......... .......... .......... ..........  4%  143M 0s
   600K .......... .......... .......... .......... ..........  4%  173M 0s
   650K .......... .......... .......... .......... ..........  4%  131M 0s
   700K .......... .......... .......... .......... ..........  5%  168M 0s
   750K .......... .......... .......... .......... ..........  5%  111M 0s
   800K .......... .......... .......... .......... ..........  5% 74.2M 0s
   850K .......... .......... .......... .......... ..........  6% 59.9M 0s
   900K .......... .......... .......... .......... ..........  6% 68.5M 0s
   950K .......... .......... .......... .......... ..........  6% 62.1M 0s
  1000K .......... .......... .......... .......... ..........  7% 67.5M 0s
  1050K .......... .......... .......... .......... ..........  7% 72.0M 0s
  1100K .......... .......... .......... .......... ..........  7% 66.9M 0s
  1150K .......... .......... .......... .......... ..........  8% 41.2M 0s
  1200K .......... .......... .......... .......... ..........  8% 95.7M 0s
  1250K .......... .......... .......... .......... ..........  8%  145M 0s
  1300K .......... .......... .......... .......... ..........  9% 80.0M 0s
  1350K .......... .......... .......... .......... ..........  9% 70.6M 0s
  1400K .......... .......... .......... .......... ..........  9% 94.2M 0s
  1450K .......... .......... .......... .......... .......... 10% 83.8M 0s
  1500K .......... .......... .......... .......... .......... 10%  130M 0s
  1550K .......... .......... .......... .......... .......... 10% 67.7M 0s
  1600K .......... .......... .......... .......... .......... 11%  102M 0s
  1650K .......... .......... .......... .......... .......... 11% 9.63M 0s
  1700K .......... .......... .......... .......... .......... 11% 72.4M 0s
  1750K .......... .......... .......... .......... .......... 12%  149M 0s
  1800K .......... .......... .......... .......... .......... 12% 59.3M 0s
  1850K .......... .......... .......... .......... .......... 12% 73.4M 0s
  1900K .......... .......... .......... .......... .......... 13% 89.2M 0s
  1950K .......... .......... .......... .......... .......... 13% 58.9M 0s
  2000K .......... .......... .......... .......... .......... 13% 1.36M 0s
  2050K .......... .......... .......... .......... .......... 14% 86.2M 0s
  2100K .......... .......... .......... .......... .......... 14% 59.7M 0s
  2150K .......... .......... .......... .......... .......... 14%  150M 0s
  2200K .......... .......... .......... .......... .......... 15%  151M 0s
  2250K .......... .......... .......... .......... .......... 15% 79.3M 0s
  2300K .......... .......... .......... .......... .......... 15%  136M 0s
  2350K .......... .......... .......... .......... .......... 16% 84.9M 0s
  2400K .......... .......... .......... .......... .......... 16%  119M 0s
  2450K .......... .......... .......... .......... .......... 16% 91.6M 0s
  2500K .......... .......... .......... .......... .......... 17%  129M 0s
  2550K .......... .......... .......... .......... .......... 17% 63.1M 0s
  2600K .......... .......... .......... .......... .......... 18%  185M 0s
  2650K .......... .......... .......... .......... .......... 18% 75.7M 0s
  2700K .......... .......... .......... .......... .......... 18%  139M 0s
  2750K .......... .......... .......... .......... .......... 19% 73.0M 0s
  2800K .......... .......... .......... .......... .......... 19%  138M 0s
  2850K .......... .......... .......... .......... .......... 19%  145M 0s
  2900K .......... .......... .......... .......... .......... 20%  102M 0s
  2950K .......... .......... .......... .......... .......... 20%  143M 0s
  3000K .......... .......... .......... .......... .......... 20%  105M 0s
  3050K .......... .......... .......... .......... .......... 21%  124M 0s
  3100K .......... .......... .......... .......... .......... 21%  119M 0s
  3150K .......... .......... .......... .......... .......... 21% 79.4M 0s
  3200K .......... .......... .......... .......... .......... 22% 76.2M 0s
  3250K .......... .......... .......... .......... .......... 22%  130M 0s
  3300K .......... .......... .......... .......... .......... 22% 97.6M 0s
  3350K .......... .......... .......... .......... .......... 23%  102M 0s
  3400K .......... .......... .......... .......... .......... 23%  160M 0s
  3450K .......... .......... .......... .......... .......... 23%  150M 0s
  3500K .......... .......... .......... .......... .......... 24%  164M 0s
  3550K .......... .......... .......... .......... .......... 24%  144M 0s
  3600K .......... .......... .......... .......... .......... 24%  141M 0s
  3650K .......... .......... .......... .......... .......... 25% 19.6M 0s
  3700K .......... .......... .......... .......... .......... 25%  188M 0s
  3750K .......... .......... .......... .......... .......... 25%  192M 0s
  3800K .......... .......... .......... .......... .......... 26% 29.8M 0s
  3850K .......... .......... .......... .......... .......... 26%  176M 0s
  3900K .......... .......... .......... .......... .......... 26%  166M 0s
  3950K .......... .......... .......... .......... .......... 27%  156M 0s
  4000K .......... .......... .......... .......... .......... 27% 37.1M 0s
  4050K .......... .......... .......... .......... .......... 27% 1.50M 0s
  4100K .......... .......... .......... .......... .......... 28%  136M 0s
  4150K .......... .......... .......... .......... .......... 28% 73.9M 0s
  4200K .......... .......... .......... .......... .......... 28%  127M 0s
  4250K .......... .......... .......... .......... .......... 29%  125M 0s
  4300K .......... .......... .......... .......... .......... 29%  122M 0s
  4350K .......... .......... .......... .......... .......... 29%  121M 0s
  4400K .......... .......... .......... .......... .......... 30%  130M 0s
  4450K .......... .......... .......... .......... .......... 30%  124M 0s
  4500K .......... .......... .......... .......... .......... 30% 84.2M 0s
  4550K .......... .......... .......... .......... .......... 31%  122M 0s
  4600K .......... .......... .......... .......... .......... 31% 81.2M 0s
  4650K .......... .......... .......... .......... .......... 31%  175M 0s
  4700K .......... .......... .......... .......... .......... 32%  114M 0s
  4750K .......... .......... .......... .......... .......... 32%  103M 0s
  4800K .......... .......... .......... .......... .......... 32%  162M 0s
  4850K .......... .......... .......... .......... .......... 33% 7.93M 0s
  4900K .......... .......... .......... .......... .......... 33%  128M 0s
  4950K .......... .......... .......... .......... .......... 33%  145M 0s
  5000K .......... .......... .......... .......... .......... 34%  146M 0s
  5050K .......... .......... .......... .......... .......... 34%  157M 0s
  5100K .......... .......... .......... .......... .......... 35%  105M 0s
  5150K .......... .......... .......... .......... .......... 35% 88.3M 0s
  5200K .......... .......... .......... .......... .......... 35% 82.7M 0s
  5250K .......... .......... .......... .......... .......... 36%  136M 0s
  5300K .......... .......... .......... .......... .......... 36%  168M 0s
  5350K .......... .......... .......... .......... .......... 36%  124M 0s
  5400K .......... .......... .......... .......... .......... 37% 98.9M 0s
  5450K .......... .......... .......... .......... .......... 37% 96.7M 0s
  5500K .......... .......... .......... .......... .......... 37% 94.7M 0s
  5550K .......... .......... .......... .......... .......... 38% 60.0M 0s
  5600K .......... .......... .......... .......... .......... 38%  134M 0s
  5650K .......... .......... .......... .......... .......... 38%  164M 0s
  5700K .......... .......... .......... .......... .......... 39%  154M 0s
  5750K .......... .......... .......... .......... .......... 39%  135M 0s
  5800K .......... .......... .......... .......... .......... 39%  102M 0s
  5850K .......... .......... .......... .......... .......... 40%  152M 0s
  5900K .......... .......... .......... .......... .......... 40% 53.8M 0s
  5950K .......... .......... .......... .......... .......... 40%  177M 0s
  6000K .......... .......... .......... .......... .......... 41%  150M 0s
  6050K .......... .......... .......... .......... .......... 41% 30.5M 0s
  6100K .......... .......... .......... .......... .......... 41%  191M 0s
  6150K .......... .......... .......... .......... .......... 42%  187M 0s
  6200K .......... .......... .......... .......... .......... 42% 48.5M 0s
  6250K .......... .......... .......... .......... .......... 42%  179M 0s
  6300K .......... .......... .......... .......... .......... 43%  168M 0s
  6350K .......... .......... .......... .......... .......... 43%  158M 0s
  6400K .......... .......... .......... .......... .......... 43% 30.2M 0s
  6450K .......... .......... .......... .......... .......... 44%  184M 0s
  6500K .......... .......... .......... .......... .......... 44%  203M 0s
  6550K .......... .......... .......... .......... .......... 44%  139M 0s
  6600K .......... .......... .......... .......... .......... 45%  195M 0s
  6650K .......... .......... .......... .......... .......... 45% 24.9M 0s
  6700K .......... .......... .......... .......... .......... 45%  200M 0s
  6750K .......... .......... .......... .......... .......... 46%  196M 0s
  6800K .......... .......... .......... .......... .......... 46%  146M 0s
  6850K .......... .......... .......... .......... .......... 46%  156M 0s
  6900K .......... .......... .......... .......... .......... 47%  173M 0s
  6950K .......... .......... .......... .......... .......... 47% 20.7M 0s
  7000K .......... .......... .......... .......... .......... 47%  194M 0s
  7050K .......... .......... .......... .......... .......... 48%  194M 0s
  7100K .......... .......... .......... .......... .......... 48%  145M 0s
  7150K .......... .......... .......... .......... .......... 48%  168M 0s
  7200K .......... .......... .......... .......... .......... 49%  157M 0s
  7250K .......... .......... .......... .......... .......... 49% 18.3M 0s
  7300K .......... .......... .......... .......... .......... 49%  205M 0s
  7350K .......... .......... .......... .......... .......... 50%  195M 0s
  7400K .......... .......... .......... .......... .......... 50%  140M 0s
  7450K .......... .......... .......... .......... .......... 50%  142M 0s
  7500K .......... .......... .......... .......... .......... 51%  202M 0s
  7550K .......... .......... .......... .......... .......... 51%  136M 0s
  7600K .......... .......... .......... .......... .......... 51% 16.9M 0s
  7650K .......... .......... .......... .......... .......... 52%  175M 0s
  7700K .......... .......... .......... .......... .......... 52%  190M 0s
  7750K .......... .......... .......... .......... .......... 53%  147M 0s
  7800K .......... .......... .......... .......... .......... 53%  146M 0s
  7850K .......... .......... .......... .......... .......... 53%  180M 0s
  7900K .......... .......... .......... .......... .......... 54%  143M 0s
  7950K .......... .......... .......... .......... .......... 54%  158M 0s
  8000K .......... .......... .......... .......... .......... 54% 15.7M 0s
  8050K .......... .......... .......... .......... .......... 55%  177M 0s
  8100K .......... .......... .......... .......... .......... 55%  205M 0s
  8150K .......... .......... .......... .......... .......... 55% 4.46M 0s
  8200K .......... .......... .......... .......... .......... 56% 91.8M 0s
  8250K .......... .......... .......... .......... .......... 56%  122M 0s
  8300K .......... .......... .......... .......... .......... 56%  123M 0s
  8350K .......... .......... .......... .......... .......... 57%  110M 0s
  8400K .......... .......... .......... .......... .......... 57% 88.2M 0s
  8450K .......... .......... .......... .......... .......... 57% 85.8M 0s
  8500K .......... .......... .......... .......... .......... 58%  179M 0s
  8550K .......... .......... .......... .......... .......... 58%  137M 0s
  8600K .......... .......... .......... .......... .......... 58%  118M 0s
  8650K .......... .......... .......... .......... .......... 59% 84.1M 0s
  8700K .......... .......... .......... .......... .......... 59%  111M 0s
  8750K .......... .......... .......... .......... .......... 59%  173M 0s
  8800K .......... .......... .......... .......... .......... 60%  117M 0s
  8850K .......... .......... .......... .......... .......... 60% 89.0M 0s
  8900K .......... .......... .......... .......... .......... 60% 94.5M 0s
  8950K .......... .......... .......... .......... .......... 61%  145M 0s
  9000K .......... .......... .......... .......... .......... 61%  208M 0s
  9050K .......... .......... .......... .......... .......... 61% 90.9M 0s
  9100K .......... .......... .......... .......... .......... 62%  108M 0s
  9150K .......... .......... .......... .......... .......... 62% 58.6M 0s
  9200K .......... .......... .......... .......... .......... 62%  161M 0s
  9250K .......... .......... .......... .......... .......... 63%  140M 0s
  9300K .......... .......... .......... .......... .......... 63%  207M 0s
  9350K .......... .......... .......... .......... .......... 63%  104M 0s
  9400K .......... .......... .......... .......... .......... 64%  143M 0s
  9450K .......... .......... .......... .......... .......... 64% 51.3M 0s
  9500K .......... .......... .......... .......... .......... 64%  175M 0s
  9550K .......... .......... .......... .......... .......... 65% 30.1M 0s
  9600K .......... .......... .......... .......... .......... 65%  139M 0s
  9650K .......... .......... .......... .......... .......... 65%  196M 0s
  9700K .......... .......... .......... .......... .......... 66%  138M 0s
  9750K .......... .......... .......... .......... .......... 66% 28.7M 0s
  9800K .......... .......... .......... .......... .......... 66%  198M 0s
  9850K .......... .......... .......... .......... .......... 67%  154M 0s
  9900K .......... .......... .......... .......... .......... 67%  155M 0s
  9950K .......... .......... .......... .......... .......... 67%  127M 0s
 10000K .......... .......... .......... .......... .......... 68%  190M 0s
 10050K .......... .......... .......... .......... .......... 68%  191M 0s
 10100K .......... .......... .......... .......... .......... 68%  188M 0s
 10150K .......... .......... .......... .......... .......... 69%  183M 0s
 10200K .......... .......... .......... .......... .......... 69% 1.16M 0s
 10250K .......... .......... .......... .......... .......... 70%  103M 0s
 10300K .......... .......... .......... .......... .......... 70% 84.9M 0s
 10350K .......... .......... .......... .......... .......... 70%  130M 0s
 10400K .......... .......... .......... .......... .......... 71%  145M 0s
 10450K .......... .......... .......... .......... .......... 71%  148M 0s
 10500K .......... .......... .......... .......... .......... 71%  110M 0s
 10550K .......... .......... .......... .......... .......... 72% 73.8M 0s
 10600K .......... .......... .......... .......... .......... 72%  193M 0s
 10650K .......... .......... .......... .......... .......... 72% 74.7M 0s
 10700K .......... .......... .......... .......... .......... 73%  148M 0s
 10750K .......... .......... .......... .......... .......... 73%  144M 0s
 10800K .......... .......... .......... .......... .......... 73% 73.5M 0s
 10850K .......... .......... .......... .......... .......... 74%  129M 0s
 10900K .......... .......... .......... .......... .......... 74%  172M 0s
 10950K .......... .......... .......... .......... .......... 74% 63.8M 0s
 11000K .......... .......... .......... .......... .......... 75%  125M 0s
 11050K .......... .......... .......... .......... .......... 75%  133M 0s
 11100K .......... .......... .......... .......... .......... 75%  190M 0s
 11150K .......... .......... .......... .......... .......... 76% 43.0M 0s
 11200K .......... .......... .......... .......... .......... 76%  166M 0s
 11250K .......... .......... .......... .......... .......... 76%  135M 0s
 11300K .......... .......... .......... .......... .......... 77%  193M 0s
 11350K .......... .......... .......... .......... .......... 77%  149M 0s
 11400K .......... .......... .......... .......... .......... 77%  160M 0s
 11450K .......... .......... .......... .......... .......... 78%  152M 0s
 11500K .......... .......... .......... .......... .......... 78%  140M 0s
 11550K .......... .......... .......... .......... .......... 78% 21.4M 0s
 11600K .......... .......... .......... .......... .......... 79%  180M 0s
 11650K .......... .......... .......... .......... .......... 79%  152M 0s
 11700K .......... .......... .......... .......... .......... 79%  135M 0s
 11750K .......... .......... .......... .......... .......... 80%  175M 0s
 11800K .......... .......... .......... .......... .......... 80%  178M 0s
 11850K .......... .......... .......... .......... .......... 80%  153M 0s
 11900K .......... .......... .......... .......... .......... 81%  151M 0s
 11950K .......... .......... .......... .......... .......... 81%  135M 0s
 12000K .......... .......... .......... .......... .......... 81%  206M 0s
 12050K .......... .......... .......... .......... .......... 82%  186M 0s
 12100K .......... .......... .......... .......... .......... 82%  153M 0s
 12150K .......... .......... .......... .......... .......... 82%  134M 0s
 12200K .......... .......... .......... .......... .......... 83%  180M 0s
 12250K .......... .......... .......... .......... .......... 83% 1.30M 0s
 12300K .......... .......... .......... .......... .......... 83%  142M 0s
 12350K .......... .......... .......... .......... .......... 84% 51.2M 0s
 12400K .......... .......... .......... .......... .......... 84%  167M 0s
 12450K .......... .......... .......... .......... .......... 84%  124M 0s
 12500K .......... .......... .......... .......... .......... 85%  108M 0s
 12550K .......... .......... .......... .......... .......... 85% 86.6M 0s
 12600K .......... .......... .......... .......... .......... 85%  150M 0s
 12650K .......... .......... .......... .......... .......... 86% 88.3M 0s
 12700K .......... .......... .......... .......... .......... 86%  192M 0s
 12750K .......... .......... .......... .......... .......... 86%  120M 0s
 12800K .......... .......... .......... .......... .......... 87%  109M 0s
 12850K .......... .......... .......... .......... .......... 87% 99.0M 0s
 12900K .......... .......... .......... .......... .......... 88%  107M 0s
 12950K .......... .......... .......... .......... .......... 88%  114M 0s
 13000K .......... .......... .......... .......... .......... 88%  158M 0s
 13050K .......... .......... .......... .......... .......... 89% 96.9M 0s
 13100K .......... .......... .......... .......... .......... 89% 88.1M 0s
 13150K .......... .......... .......... .......... .......... 89% 60.6M 0s
 13200K .......... .......... .......... .......... .......... 90%  164M 0s
 13250K .......... .......... .......... .......... .......... 90%  151M 0s
 13300K .......... .......... .......... .......... .......... 90%  185M 0s
 13350K .......... .......... .......... .......... .......... 91%  138M 0s
 13400K .......... .......... .......... .......... .......... 91%  100M 0s
 13450K .......... .......... .......... .......... .......... 91% 42.2M 0s
 13500K .......... .......... .......... .......... .......... 92%  148M 0s
 13550K .......... .......... .......... .......... .......... 92%  151M 0s
 13600K .......... .......... .......... .......... .......... 92%  149M 0s
 13650K .......... .......... .......... .......... .......... 93%  154M 0s
 13700K .......... .......... .......... .......... .......... 93%  160M 0s
 13750K .......... .......... .......... .......... .......... 93%  142M 0s
 13800K .......... .......... .......... .......... .......... 94%  203M 0s
 13850K .......... .......... .......... .......... .......... 94%  125M 0s
 13900K .......... .......... .......... .......... .......... 94% 20.0M 0s
 13950K .......... .......... .......... .......... .......... 95%  176M 0s
 14000K .......... .......... .......... .......... .......... 95%  207M 0s
 14050K .......... .......... .......... .......... .......... 95% 34.0M 0s
 14100K .......... .......... .......... .......... .......... 96%  142M 0s
 14150K .......... .......... .......... .......... .......... 96%  176M 0s
 14200K .......... .......... .......... .......... .......... 96%  143M 0s
 14250K .......... .......... .......... .......... .......... 97%  190M 0s
 14300K .......... .......... .......... .......... .......... 97%  149M 0s
 14350K .......... .......... .......... .......... .......... 97% 17.9M 0s
 14400K .......... .......... .......... .......... .......... 98%  195M 0s
 14450K .......... .......... .......... .......... .......... 98%  175M 0s
 14500K .......... .......... .......... .......... .......... 98%  205M 0s
 14550K .......... .......... .......... .......... .......... 99%  176M 0s
 14600K .......... .......... .......... .......... .......... 99%  204M 0s
 14650K .......... .......... .......... .......... .......... 99%  180M 0s
 14700K .......... ...                                        100%  195M=0.3s

2024-03-17 23:49:38 (43.9 MB/s) - ‘lammps-potentials-8snt-v1.zip’ saved [15066136/15066136]

Archive:  ./lammps-potentials-8snt-v1.zip
  inflating: potentials/Ag_u3.eam    
  inflating: potentials/AlCu.adp     
  inflating: potentials/AlCu.bop.table  
  inflating: potentials/AlCu.eam.alloy  
  inflating: potentials/AlCuH.bop.table  
  inflating: potentials/AlFe_mm.eam.fs  
  inflating: potentials/AlO.eam.alloy  
  inflating: potentials/AlO.streitz  
  inflating: potentials/AlSiMgCuFe.meam  
  inflating: potentials/Al_Batra_2019.agni  
  inflating: potentials/Al_jnp.eam   
  inflating: potentials/Al_jpc.agni  
  inflating: potentials/Al_mm.eam.fs  
  inflating: potentials/Al_prb.agni  
  inflating: potentials/Al_zhou.eam.alloy  
  inflating: potentials/Au_u3.eam    
  inflating: potentials/BN.extep     
  inflating: potentials/BNC.tersoff  
  inflating: potentials/BNCH-old.ILP  
  inflating: potentials/BNCH.ILP     
  inflating: potentials/BNC_MBD_bulk.ILP  
  inflating: potentials/BNC_TS_bulk.ILP  
  inflating: potentials/Bi.meam      
  inflating: potentials/C.drip       
  inflating: potentials/C.lcbop      
  inflating: potentials/CC.KC        
  inflating: potentials/CC.KC-full   
  inflating: potentials/CC.Lebedeva  
  inflating: potentials/CCu_v2.bop.table  
  inflating: potentials/CH.KC        
  inflating: potentials/CH.airebo    
  inflating: potentials/CH.airebo-m  
  inflating: potentials/CH.rebo      
  inflating: potentials/CHAu.ILP     
  inflating: potentials/CH_taper.KC  
  inflating: potentials/COH.DMC.aip.water.2dm  
  inflating: potentials/COH.aip.water.2dm  
  inflating: potentials/C_SNAP_2021.10.15.quadratic.snapcoeff  
  inflating: potentials/C_SNAP_2021.10.15.quadratic.snapparam  
  inflating: potentials/CdTe.bop.table  
  inflating: potentials/CdTe.sw      
  inflating: potentials/CdTeSe.bop.table  
  inflating: potentials/CdTeZn.bop.table  
  inflating: potentials/CdTeZnSeHgS0.sw  
  inflating: potentials/CdZnTe_v1.bop.table  
  inflating: potentials/CdZnTe_v2.bop.table  
  inflating: potentials/CoAl.eam.alloy  
  inflating: potentials/Cu-PBE-core-rep.ace  
  inflating: potentials/Cu.meam      
  inflating: potentials/Cu.nn.mliap.model  
  inflating: potentials/Cu.snap.mliap.descriptor  
  inflating: potentials/CuH.bop.table  
  inflating: potentials/CuNi.eam.alloy  
  inflating: potentials/CuTa.eam.alloy  
  inflating: potentials/CuTa_eam.poly  
  inflating: potentials/CuZr_mm.eam.fs  
  inflating: potentials/Cu_Huan_2019_fp1.agni  
  inflating: potentials/Cu_Huan_2019_fp2.agni  
  inflating: potentials/Cu_Zuo_JPCA2020.quadratic.snap  
  inflating: potentials/Cu_Zuo_JPCA2020.quadratic.snapcoeff  
  inflating: potentials/Cu_Zuo_JPCA2020.quadratic.snapparam  
  inflating: potentials/Cu_Zuo_JPCA2020.snap  
  inflating: potentials/Cu_Zuo_JPCA2020.snapcoeff  
  inflating: potentials/Cu_Zuo_JPCA2020.snapparam  
  inflating: potentials/Cu_mishin1.eam.alloy  
  inflating: potentials/Cu_smf7.eam  
  inflating: potentials/Cu_u3.eam    
  inflating: potentials/Cu_u6.eam    
  inflating: potentials/Cu_zhou.eam.alloy  
  inflating: potentials/FeCH_BOP_I.poly  
  inflating: potentials/FeCH_BOP_II.poly  
  inflating: potentials/FeCr.cdeam   
  inflating: potentials/FeP_mm.eam.fs  
  inflating: potentials/Fe_mm.eam.fs  
  inflating: potentials/GaAs.bop.table  
  inflating: potentials/GaN.sw       
  inflating: potentials/GaN.tersoff  
  inflating: potentials/GaN_sw.poly  
  inflating: potentials/GaN_tersoff.poly  
  inflating: potentials/Ge.tersoff   
  inflating: potentials/Ge_Zuo_JPCA2020.quadratic.snap  
  inflating: potentials/Ge_Zuo_JPCA2020.quadratic.snapcoeff  
  inflating: potentials/Ge_Zuo_JPCA2020.quadratic.snapparam  
  inflating: potentials/Ge_Zuo_JPCA2020.snap  
  inflating: potentials/Ge_Zuo_JPCA2020.snapcoeff  
  inflating: potentials/Ge_Zuo_JPCA2020.snapparam  
  inflating: potentials/HGa.msmeam   
  inflating: potentials/He_He_JW2013.table  
  inflating: potentials/InP.vashishta  
  inflating: potentials/InP_JCPA2020.mliap  
  inflating: potentials/InP_JCPA2020.mliap.descriptor  
  inflating: potentials/InP_JCPA2020.mliap.model  
  inflating: potentials/InP_JCPA2020.snap  
  inflating: potentials/InP_JCPA2020.snapcoeff  
  inflating: potentials/InP_JCPA2020.snapparam  
  inflating: potentials/Li_Zuo_JPCA2020.quadratic.snap  
  inflating: potentials/Li_Zuo_JPCA2020.quadratic.snapcoeff  
  inflating: potentials/Li_Zuo_JPCA2020.quadratic.snapparam  
  inflating: potentials/Li_Zuo_JPCA2020.snap  
  inflating: potentials/Li_Zuo_JPCA2020.snapcoeff  
  inflating: potentials/Li_Zuo_JPCA2020.snapparam  
  inflating: potentials/MOH.nb3b.harmonic  
  inflating: potentials/MgAl.rann    
  inflating: potentials/Mg_mm.eam.fs  
  inflating: potentials/Mo5.2.mgpt.README  
  inflating: potentials/Mo5.2.mgpt.parmin  
  inflating: potentials/Mo5.2.mgpt.potin  
  inflating: potentials/MoS2.ILP     
  inflating: potentials/Mo_Chen_PRM2017.snap  
  inflating: potentials/Mo_Chen_PRM2017.snapcoeff  
  inflating: potentials/Mo_Chen_PRM2017.snapparam  
  inflating: potentials/Mo_Zuo_JPCA2020.quadratic.snap  
  inflating: potentials/Mo_Zuo_JPCA2020.quadratic.snapcoeff  
  inflating: potentials/Mo_Zuo_JPCA2020.quadratic.snapparam  
  inflating: potentials/Mo_Zuo_JPCA2020.snap  
  inflating: potentials/Mo_Zuo_JPCA2020.snapcoeff  
  inflating: potentials/Mo_Zuo_JPCA2020.snapparam  
  inflating: potentials/Ni.adp       
  inflating: potentials/Ni.meam      
  inflating: potentials/NiAlH_jea.eam.alloy  
  inflating: potentials/NiAlH_jea.eam.fs  
  inflating: potentials/Ni_Mo.mliap.descriptor  
  inflating: potentials/Ni_Mo.mliap.model  
  inflating: potentials/Ni_Zuo_JPCA2020.quadratic.snap  
  inflating: potentials/Ni_Zuo_JPCA2020.quadratic.snapcoeff  
  inflating: potentials/Ni_Zuo_JPCA2020.quadratic.snapparam  
  inflating: potentials/Ni_Zuo_JPCA2020.snap  
  inflating: potentials/Ni_Zuo_JPCA2020.snapcoeff  
  inflating: potentials/Ni_Zuo_JPCA2020.snapparam  
  inflating: potentials/Ni_smf7.eam  
  inflating: potentials/Ni_u3.eam    
  inflating: potentials/PdHHe.eam.he  
  inflating: potentials/Pd_u3.eam    
  inflating: potentials/Pt_Chapman_2020.agni  
  inflating: potentials/Pt_u3.eam    
  inflating: potentials/README       
  inflating: potentials/README.reax  
  inflating: potentials/Si.b.meam.sw.spline  
  inflating: potentials/Si.edip      
  inflating: potentials/Si.nn.mliap.descriptor  
  inflating: potentials/Si.nn.mliap.model  
  inflating: potentials/Si.sw        
  inflating: potentials/Si.tersoff   
  inflating: potentials/Si.tersoff.mod  
  inflating: potentials/Si.tersoff.modc  
  inflating: potentials/SiC.edip     
  inflating: potentials/SiC.gw       
  inflating: potentials/SiC.gw.zbl   
  inflating: potentials/SiC.meam     
  inflating: potentials/SiC.tersoff  
  inflating: potentials/SiC.tersoff.zbl  
  inflating: potentials/SiC.vashishta  
  inflating: potentials/SiCGe.tersoff  
  inflating: potentials/SiC_1989.tersoff  
  inflating: potentials/SiC_1990.tersoff  
  inflating: potentials/SiC_1994.tersoff  
  inflating: potentials/SiC_Erhart-Albe.tersoff  
  inflating: potentials/SiGeH.sw.quip  
  inflating: potentials/SiO.1990.vashishta  
  inflating: potentials/SiO.1994.vashishta  
  inflating: potentials/SiO.1997.vashishta  
  inflating: potentials/SiO.tersoff  
  inflating: potentials/Si_1.meam.spline  
  inflating: potentials/Si_2.meam.spline  
  inflating: potentials/Si_Zuo_JPCA2020.quadratic.snap  
  inflating: potentials/Si_Zuo_JPCA2020.quadratic.snapcoeff  
  inflating: potentials/Si_Zuo_JPCA2020.quadratic.snapparam  
  inflating: potentials/Si_Zuo_JPCA2020.snap  
  inflating: potentials/Si_Zuo_JPCA2020.snapcoeff  
  inflating: potentials/Si_Zuo_JPCA2020.snapparam  
  inflating: potentials/Ta06A.mliap  
  inflating: potentials/Ta06A.mliap.descriptor  
  inflating: potentials/Ta06A.mliap.model  
  inflating: potentials/Ta06A.nn.mliap  
  inflating: potentials/Ta06A.nn.mliap.model  
  inflating: potentials/Ta06A.pytorch.mliap  
  inflating: potentials/Ta06A.snap   
  inflating: potentials/Ta06A.snapcoeff  
  inflating: potentials/Ta06A.snapparam  
  inflating: potentials/Ta4.mgpt.README  
  inflating: potentials/Ta4.mgpt.parmin  
  inflating: potentials/Ta4.mgpt.potin  
  inflating: potentials/Ta6.8x.mgpt.README  
  inflating: potentials/Ta6.8x.mgpt.parmin  
  inflating: potentials/Ta6.8x.mgpt.potin  
  inflating: potentials/Ta_coeff.pod  
  inflating: potentials/Ta_param.pod  
  inflating: potentials/Ti.meam.spline  
  inflating: potentials/Ti.meam.sw.spline  
  inflating: potentials/Ti.rann      
  inflating: potentials/TiO.meam.spline  
  inflating: potentials/TiZr_2.rann  
  inflating: potentials/TlBr_msw.poly  
  inflating: potentials/V6.1.mgpt.README  
  inflating: potentials/V6.1.mgpt.parmin  
  inflating: potentials/V6.1.mgpt.potin  
  inflating: potentials/VFe_mm.eam.fs  
  inflating: potentials/W.quadratic.mliap  
  inflating: potentials/W.quadratic.mliap.descriptor  
  inflating: potentials/W.quadratic.mliap.model  
  inflating: potentials/WBe_Wood_PRB2019.mliap  
  inflating: potentials/WBe_Wood_PRB2019.mliap.descriptor  
  inflating: potentials/WBe_Wood_PRB2019.mliap.model  
  inflating: potentials/WBe_Wood_PRB2019.snap  
  inflating: potentials/WBe_Wood_PRB2019.snapcoeff  
  inflating: potentials/WBe_Wood_PRB2019.snapparam  
  inflating: potentials/WL.meam      
  inflating: potentials/W_2940_2017_2.snap  
  inflating: potentials/W_2940_2017_2.snapcoeff  
  inflating: potentials/W_2940_2017_2.snapparam  
  inflating: potentials/W_2940_2017_2_He_JW2013.snap  
  inflating: potentials/W_He_JW2013.table  
  inflating: potentials/W_zhou.eam.alloy  
  inflating: potentials/Zn.rann      
  inflating: potentials/Zr.rann      
  inflating: potentials/Zr_mm.eam.fs  
  inflating: potentials/acks2_ff.water  
  inflating: potentials/charmm22.cmap  
  inflating: potentials/charmm36.cmap  
  inflating: potentials/ci-reaxFF_ZBL.dat  
  inflating: potentials/ffield.ci-reax.CH  
  inflating: potentials/ffield.comb  
  inflating: potentials/ffield.comb3  
  inflating: potentials/ffield.eim   
  inflating: potentials/ffield.reax.AB  
  inflating: potentials/ffield.reax.AuO  
  inflating: potentials/ffield.reax.FC  
  inflating: potentials/ffield.reax.Fe_O_C_H  
  inflating: potentials/ffield.reax.V_O_C_H  
  inflating: potentials/ffield.reax.ZnOH  
  inflating: potentials/ffield.reax.budzien  
  inflating: potentials/ffield.reax.cho  
  inflating: potentials/ffield.reax.lg  
  inflating: potentials/ffield.reax.mattsson  
  inflating: potentials/ffield.reax.rdx  
  inflating: potentials/ffield.smtbq.Al  
  inflating: potentials/ffield.smtbq.Al2O3  
  inflating: potentials/ffield.smtbq.TiO2  
  inflating: potentials/lib.comb3    
  inflating: potentials/library.meam  
  inflating: potentials/library.msmeam  
  inflating: potentials/tmd.sw.mod   
代码
文本
[28]

%%writefile in.CuEAM

units metal
boundary p p p
atom_style atomic
#---------- setup loop -----------------
variable i loop 40
variable x equal 3.40+0.01*$i
lattice fcc $x
region box block 0 1 0 1 0 1
create_box 1 box
create_atoms 1 box
mass 1 64
#---------- use Cu EAM parameter----------
pair_style eam
pair_coeff * * ./potentials/Cu_u3.eam Cu
variable v equal ($x)^3
variable n equal count(all)
variable P equal pe
#-------------- run ----------------------
run 0
print "Cohesive Energy of Cu v = $v x= $x E = $P "
clear
next i
jump SELF
Overwriting in.CuEAM
代码
文本
[29]
%%capture
!OMP_NUM_THREADS=2 lmp -i in.CuEAM
代码
文本
[30]
!grep 'Cohesive' log.lammps
代码
文本
[31]
# Read the file and search for lines containing the pattern "Cohesive Energy of Cu v = $v x= $x E = $P"
import re

# Initialize list to hold the matching lines
matching_lines = []

# Define the regex pattern for capturing v and x and E values
pattern = re.compile(r"Cohesive Energy of Cu v = ([\d\.-]+) x= ([\d\.-]+) E = ([\d\.-]+)")

# Read the file and search for the pattern
with open('./log.lammps', 'r') as file:
for line in file:
match = pattern.search(line)
if match:
v_value = float(match.group(1))
x_value = float(match.group(2))
E_value = float(match.group(3))
matching_lines.append((v_value,x_value,E_value))

# Show some of the matching lines
matching_lines[:40]
[]
代码
文本
[17]
# Write the extracted v, x, and E values to a CSV file
with open('lj_EAM.csv', 'w') as f:
f.write("v,x,E\n") # Write header
for v, x, E in matching_lines:
f.write(f"{v},{x},{E}\n")
代码
文本
[18]
import pandas as pd
import numpy as np

# 读取数据(之前存储的csv文件):
df = pd.read_csv('lj_EAM.csv')
v = np.array(df['v'])
x = np.array(df['x'])
E = np.array(df['E'])

# 先做一次多项式拟合,根据以上多项式拟合的结果设置初始猜测解X0:
a, b, c = np.polyfit(v, E, 2)
v0 = -b / (2 * a)
e0 = a * v0 ** 2 + b * v0 + c
b0 = 2 * a * v0
bP = 3.5
x0 = [e0, b0, bP, v0]

def Murnaghan(parameters, vol):
E0 = parameters[0]
B0 = parameters[1]
BP = parameters[2]
V0 = parameters[3]
E = E0 + B0 * vol / BP * (((V0 / vol) ** BP) / (BP - 1) + 1) - V0 * B0 / (BP - 1.)
return E

# 定义误差(优化目标)
def residual(pars, y, x):
err = y - Murnaghan(pars, x)
return err

# 进行拟合:
from scipy.optimize import leastsq

murnpars, ier = leastsq(residual, x0, args=(E, v))

# 输出结果
print('Bulk Modulus:', murnpars[1])
print('Lattice constant:', murnpars[3] ** (1 / 3))

# 拟合效果可视化:
from matplotlib import pyplot as plt

v_mesh = np.linspace(np.min(v), np.max(v), 1000)
plt.scatter(v, E, 40)
plt.plot(v_mesh, Murnaghan(murnpars, v_mesh))
plt.ylabel('Energy')
plt.xlabel('Volume')
plt.show()
---------------------------------------------------------------------------
TypeError                                 Traceback (most recent call last)
Cell In[18], line 11
      8 E = np.array(df['E'])
     10 # 先做一次多项式拟合,根据以上多项式拟合的结果设置初始猜测解X0:
---> 11 a, b, c = np.polyfit(v, E, 2)
     12 v0 = -b / (2 * a)
     13 e0 = a * v0 ** 2 + b * v0 + c

File /opt/deepmd-kit-3.0.0/lib/python3.10/site-packages/numpy/lib/polynomial.py:639, in polyfit(x, y, deg, rcond, full, w, cov)
    637     raise TypeError("expected 1D vector for x")
    638 if x.size == 0:
--> 639     raise TypeError("expected non-empty vector for x")
    640 if y.ndim < 1 or y.ndim > 2:
    641     raise TypeError("expected 1D or 2D array for y")

TypeError: expected non-empty vector for x
代码
文本
2403-计算材料学实战
2403-计算材料学实战
点个赞吧
推荐阅读
公开
王月昊-第6天-2403-计算材料学实战
2403-计算材料学实战
2403-计算材料学实战
Rigel
发布于 2024-03-15
公开
王月昊-第5天-2403-计算材料学实战
2403-计算材料学实战
2403-计算材料学实战
Rigel
发布于 2024-03-13
1 赞