![](https://cdn1.deepmd.net/static/img/d7d9741bda38a158-957c-4877-942f-4bf6f81fcc63.png?x-oss-process=image/resize,w_100,m_lfit)
![](https://cdn1.deepmd.net/bohrium/web/static/images/level-v2-1.png?x-oss-process=image/resize,w_50,m_lfit)
ABACUS 无轨道密度泛函理论方法使用教程
推荐镜像:abacus-user-guide:3.3.2
推荐计算资源:CPU
内容:ABACUS 无轨道密度泛函理论方法使用教程
使用方式:您可在 Bohrium Notebook上直接运行。您可以点击界面上方蓝色按钮 开始连接
,选择 abacus-user-guide:3.3.2
镜像及c4_m8_cpu
款节点配置,稍等片刻即可运行。如您遇到任何问题,请联系 bohrium@dp.tech 。
共享协议:本作品采用知识共享署名-非商业性使用-相同方式共享 4.0 国际许可协议进行许可。
本notebook改编自abacus使用指南,更多信息详见这里。
请注意:运行本notebook需要选择 Kernel为Bash
一、无轨道密度泛函理论背景知识
无轨道密度泛函理论(Orbital free density functional theory, OFDFT)是一种第一性原理模拟方法,相比于 Kohn Sham DFT (KSDFT),它的优势之一在于的算法复杂度,这使得 OFDFT 可以用于上万原子甚至更大体系的电子基态计算,或者大体系、长时间的第一性原理分子动力学等。
目前,OFDFT 已被应用于简单金属、合金、半导体、小分子、温稠密物质等体系。
1. 无轨道密度泛函理论
在 OFDFT 的框架下,体系的总能量泛函可以写为
依次为无相互作用动能,电子-离子相互作用能,电子-电子相互作用能,交换关联能,离子-离子相互作用能,其中为电荷密度。
为了在粒子数守恒的条件下求解其极小值,利用拉格朗日乘子法,定义
可以证明,这里的乘子就是无相互作用体系中最高占据态的能量,即化学势。为了保证密度处处为正,一般对进行优化,因此求对的导数,为了方便,定义,则有
其中为势能。这就是 OFDFT 求解的方程,一般用共轭梯度(CG)法、截断牛顿(TN)法或 L-BFGS 等优化算法求解。目前 ABACUS 中实现了 TN 法和两种 CG 法(Polak-Ribire 形式和 Hager-Zhang 形式),默认采用 TN 法。
ABACUS 基于平面波基矢量,实现了上述流程,可以进行基于 OFDFT 的自洽计算,分子动力学计算,以及结构弛豫。
2. 动能泛函
OFDFT 的精度高度依赖于动能泛函(kinetic energy density functional, 简称 KEDF)的精度,目前 ABACUS 中实现了 Thomas-Fermi (TF) [1], von Weizsäcker (vW) [2], TFλvW [3], Wang-Teter (WT) [4], Luo-Karasiev-Trickey (LKT) [5]共五种动能泛函。
下面我们对这些泛函做简单介绍,并且介绍在ABACUS的INPUT
文件中如何设置相关的参数。
2.1 Thomas-Fermi KEDF
设置 INPUT
文件中的 of_kinetic tf
参数
对均匀电子气精确成立,可用于极高温体系,比如处于温稠密状态的金属。
可通过 of_tf_weight
调整其权重,默认为 1。
2.2 von Weizsäcker KEDF
设置 of_kinetic vw
对单电子、双电子体系(只有一条轨道)严格成立,一般不单独使用。
可通过 of_vw_weight
调整其权重,默认为 1。
2.3 TFλvW KEDF
设置 of_kinetic tf+
当时就是TF KEDF的二阶梯度展开,一般时表现最好。
参数可通过of_vw_weight
设置,默认为1。
2.4 Wang-Teter KEDF
设置of_kinetic wt
基于 Lindhard 响应函数推导,在简单金属 Li、Mg、Al 中有着不错的表现。是 ABACUS 默认采用的 KEDF。
参数可通过 of_wt_alpha
和 of_wt_beta
设置,默认值均为。
2.5 Luo-Karasiev-Trickey KEDF
设置 of_kinetic lkt
可用于简单金属和半导体,计算效率较高,但在简单金属中精度低于 WT KEDF。
参数 可通过 of_lkt_a
设置,默认值为 1.3。
3. 局域赝势
由于 OFDFT 中舍弃了单电子轨道,无法采用常用的非局域赝势,如模守恒赝势,而必须采用局域赝势。
目前 ABACUS 支持 BLPS (bulk-derived local pseudopotential)。
下载地址: https://github.com/EACcodes/local-pseudopotentials
实空间赝势:ABINIT, ABACUS; 倒空间赝势:PROFESS。
赝势生成(需要和 ABINIT 7.0.5 结合):https://github.com/EACcodes/BLPSGenerator
覆盖 Li, Mg, Al, Si, P, Ga, As, In, Sb 九种元素
使用 BLPS 时,需要在 ABACUS 里调整的参数有:
INPUT 中:pseudo_rcut 16
STRU 中:赝势种类设置为 blps
,比如 Al 26.98 al.lda.lps blps
二、ABACUS 中进行 OFDFT 计算的具体流程
1. 自洽计算
1.1 示例
本notebook采用数据集功能,我们首先将计算所需文件复制下来,并解压
ofdft/ ofdft/s2-md/ ofdft/s2-md/STRU ofdft/s2-md/INPUT ofdft/s2-md/si.lda.lps ofdft/s2-md/KPT ofdft/s1-scf/ ofdft/s1-scf/STRU ofdft/s1-scf/INPUT ofdft/s1-scf/si.lda.lps ofdft/s1-scf/KPT ofdft/s0-relax/ ofdft/s0-relax/STRU ofdft/s0-relax/INPUT ofdft/s0-relax/si.lda.lps ofdft/s0-relax/KPT
下面是输入文件的示例:
INPUT
文件记录 OFDFT 计算所需主要参数
INPUT_PARAMETERS #Parameters (1.General) suffix scf calculation scf esolver_type ofdft symmetry 1 pseudo_dir . pseudo_rcut 16 nspin 1 #Parameters (2.Iteration) ecutwfc 60 scf_nmax 50 #Parameters (3.Basis) basis_type pw #OFDFT of_kinetic wt of_method tn
STRU
文件记录元素种类、质量、赝势,晶格矢量,原子坐标等信息
ATOMIC_SPECIES Si 28.085 si.lda.lps blps LATTICE_CONSTANT 10.2 #Lattice constant LATTICE_VECTORS 0.5 0.5 0.0 #Lattice vector 1 0.5 0.0 0.5 #Lattice vector 2 0.0 0.5 0.5 #Lattice vector 3 ATOMIC_POSITIONS Direct #Cartesian(Unit is LATTICE_CONSTANT) Si #Name of element 0.0 #Magnetic for this element. 2 #Number of atoms 0.00 0.00 0.00 0 0 0 #x,y,z, move_x, move_y, move_z 0.25 0.25 0.25 1 1 1
KPT
文件(因为 OFDFT 没有电子波函数,所以不需要布里渊区的多个 k 点,Gamma 点就可以)
K_POINTS 0 Gamma 1 1 1 0 0 0
如上所示,与 KSDFT 的自洽计算相比,OFDFT 自洽计算的输入文件有以下几个区别:
- INPUT
- 不需要设置 smearing 和 charge mixing 相关参数,如果设置了也没有关系,这些参数不会影响 OFDFT 计算;
- 将
esolver_type
设置为ofdft
; - 将
pseudo_rcut
设置为 16,以适配 BLPS 赝势。
- STRU
- 将赝势种类设置为
blps
。
- 将赝势种类设置为
做完以上调整后,即可使用默认参数进行 OFDFT 的自洽计算。
下面列举一些其它的重要参数:
of_kinetic
:用于选择动能泛函,可选项有tf, vw, tf+, wt, lkt
,默认值为wt
,具体介绍见 1.2 节;of_method
:用于选择优化方法,可选项有tn, cg1, cg2
,分别对应截断牛顿法和两种 CG 法(Polak-Ribire 形式和 Hager-Zhang 形式),默认为tn
。一般而言,效率上tn > cg2 > cg1
;of_full_pw
:做快速傅里叶变换(FFT)时,是否使用全部的平面波,默认为True
。建议打开,可以保证计算的稳定性和精度;of_full_pw_dim
:控制 FFT 维数的奇偶性,可选项有0, 1, 2
,分别表示可奇可偶,保证为奇数,保证为偶数,默认为0
。FFT 维数为偶数时,可能导致微小的误差,但一般来说可以忽略。需要注意的是,如果打开了nbspline
,则需要设置of_full_pw_dim 1
,否则会导致计算不稳定。
1.2 注意事项
目前 ABACUS 的 OFDFT 模块并不是十分完善,使用时请注意以下几个注意事项:
- 目前 OFDFT 不支持 gamma only,因此使用 OFDFT 功能时请关闭
gamma_only
; - 目前 OFDFT 只支持自旋简并,即
nspin 1
的计算; - 如果使用 PBE 泛函,建议用
dft_functional XC_GGA_X_PBE+XC_GGA_C_PBE
调用 Libxc 中的 PBE,否则可能导致计算不稳定。
2. 分子动力学与结构弛豫
ABACUS 中支持使用 OFDFT 作为能量、力和应力的求解器,进行分子动力学模拟与结构弛豫。
与使用 KSDFT 进行分子动力学或结构弛豫相比,使用 OFDFT 时,不需要对 MD,relax,或 cell-relax 相关参数进行修改,只需要按照 2.1 中的方式,将能量、力和应力的求解器替换为 OFDFT。
下面是几个实际的 INPUT 例子:
2.1 原子结构弛豫(relax)
INPUT_PARAMETERS #Parameters (1.General) suffix relax calculation relax esolver_type ofdft pseudo_dir . pseudo_rcut 16 #Parameters (2.Iteration) ecutwfc 60 scf_nmax 100 #OFDFT of_kinetic wt of_method tn #Parameters (3.Basis) basis_type pw relax_nmax 50
ABACUS v3.3.2 Atomic-orbital Based Ab-initio Computation at UStc Website: http://abacus.ustc.edu.cn/ Documentation: https://abacus.deepmodeling.com/ Repository: https://github.com/abacusmodeling/abacus-develop https://github.com/deepmodeling/abacus-develop Commit: e39b50efe (Fri Aug 18 16:14:25 2023 +0800) Tue Aug 22 20:42:39 2023 MAKE THE DIR : OUT.relax/ Notice: symbol 'Silicon' is not an element symbol!!!! set the covalent radius to be 0. UNIFORM GRID DIM : 36 * 36 * 36 UNIFORM GRID DIM(BIG): 36 * 36 * 36 DONE(0.065284 SEC) : SETUP UNITCELL DONE(0.115712 SEC) : SYMMETRY DONE(0.245386 SEC) : INIT K-POINTS --------------------------------------------------------- Ion relaxation calculations --------------------------------------------------------- SPIN KPOINTS PROCESSORS 1 1 4 --------------------------------------------------------- Use plane wave basis --------------------------------------------------------- ELEMENT NATOM XC Si 2 --------------------------------------------------------- Initial plane wave basis and FFT box --------------------------------------------------------- DONE(0.246554 SEC) : INIT BASIS DONE(0.246602 SEC) : INIT PHI DONE(0.262887 SEC) : LOCAL POTENTIAL DONE(0.262933 SEC) : NON-LOCAL POTENTIAL START CHARGE : atomic DONE(0.304721 SEC) : INIT POTENTIAL DONE(0.304762 SEC) : INIT OPTIMIZATION DONE(0.305227 SEC) : INIT KEDF ------------------------------------------- STEP OF RELAXATION : 1 ------------------------------------------- START CHARGE : atomic ======================== Running OFDFT ======================== Iter Etot(Ha) Theta PotNorm deltaE(Ha) 0 -6.938618945563e+00 2.000e-01 3.294e-01 -6.939e+00 1 -7.181560915405e+00 1.265e-01 6.974e-01 -2.429e-01 2 -7.835387737326e+00 1.566e-01 4.528e-01 -6.538e-01 3 -7.880370273123e+00 5.018e-02 5.065e-01 -4.498e-02 4 -7.994087281710e+00 7.461e-02 1.336e-01 -1.137e-01 5 -7.998782729146e+00 1.387e-02 8.727e-03 -4.695e-03 6 -7.998813224734e+00 7.063e-04 3.761e-03 -3.050e-05 7 -7.998822702151e+00 7.387e-04 7.425e-04 -9.477e-06 8 -7.998823133780e+00 1.492e-04 4.964e-04 -4.316e-07 9 -7.998823233428e+00 4.409e-05 2.286e-04 -9.965e-08 10 -7.998823269020e+00 3.674e-05 1.774e-04 -3.559e-08 ETOT DIFF (eV) : 0.000e+00 LARGEST GRAD (eV/A) : 0.000e+00 |CLASS_NAME---------|NAME---------------|TIME(Sec)-----|CALLS----|AVG------|PER%------- total 2.0986 21 0.1 1e+02 % Driver driver_line 2.0706 1 2.1 99 % PW_Basis recip2real 0.38792 992 0.00039 18 % PW_Basis gathers_scatterp 0.18973 992 0.00019 9 % Potential update_from_charge 0.54573 248 0.0022 26 % Potential cal_v_eff 0.54417 248 0.0022 26 % H_Hartree_pw v_hartree 0.32502 248 0.0013 15 % PW_Basis real2recip 0.41539 988 0.00042 20 % PW_Basis gatherp_scatters 0.22388 988 0.00023 11 % PotXC cal_v_eff 0.21038 248 0.00085 10 % XC_Functional v_xc 0.20797 248 0.00084 9.9 % Ions opt_ions 1.7925 1 1.8 85 % ESolver_OF Run 1.7901 1 1.8 85 % KEDF_WT wt_potential 0.71983 246 0.0029 34 % KEDF_vW vw_potential 0.23959 246 0.00097 11 % ---------------------------------------------------------------------------------------- START Time : Tue Aug 22 20:42:39 2023 FINISH Time : Tue Aug 22 20:42:41 2023 TOTAL Time : 2 SEE INFORMATION IN : OUT.relax/
2.2 自洽计算(SCF)
INPUT_PARAMETERS #Parameters (1.General) suffix scf calculation scf esolver_type ofdft symmetry 1 pseudo_dir . pseudo_rcut 16 nspin 1 #Parameters (2.Iteration) ecutwfc 60 scf_nmax 50 #Parameters (3.Basis) basis_type pw #OFDFT of_kinetic wt of_method tn
ABACUS v3.3.2 Atomic-orbital Based Ab-initio Computation at UStc Website: http://abacus.ustc.edu.cn/ Documentation: https://abacus.deepmodeling.com/ Repository: https://github.com/abacusmodeling/abacus-develop https://github.com/deepmodeling/abacus-develop Commit: e39b50efe (Fri Aug 18 16:14:25 2023 +0800) Tue Aug 22 20:42:49 2023 MAKE THE DIR : OUT.scf/ Notice: symbol 'Silicon' is not an element symbol!!!! set the covalent radius to be 0. UNIFORM GRID DIM : 36 * 36 * 36 UNIFORM GRID DIM(BIG): 36 * 36 * 36 DONE(0.0404985 SEC) : SETUP UNITCELL DONE(0.0872456 SEC) : SYMMETRY DONE(0.215902 SEC) : INIT K-POINTS --------------------------------------------------------- Self-consistent calculations for electrons --------------------------------------------------------- SPIN KPOINTS PROCESSORS 1 1 4 --------------------------------------------------------- Use plane wave basis --------------------------------------------------------- ELEMENT NATOM XC Si 2 --------------------------------------------------------- Initial plane wave basis and FFT box --------------------------------------------------------- DONE(0.217073 SEC) : INIT BASIS DONE(0.217092 SEC) : INIT PHI DONE(0.226342 SEC) : LOCAL POTENTIAL DONE(0.226367 SEC) : NON-LOCAL POTENTIAL START CHARGE : atomic DONE(0.283763 SEC) : INIT POTENTIAL DONE(0.283806 SEC) : INIT OPTIMIZATION DONE(0.284304 SEC) : INIT KEDF ------------------------------------------- SELF-CONSISTENT : ------------------------------------------- START CHARGE : atomic ======================== Running OFDFT ======================== Iter Etot(Ha) Theta PotNorm deltaE(Ha) 0 -6.938618945563e+00 2.000e-01 3.294e-01 -6.939e+00 1 -7.181560915405e+00 1.265e-01 6.974e-01 -2.429e-01 2 -7.835387737326e+00 1.566e-01 4.528e-01 -6.538e-01 3 -7.880370273123e+00 5.018e-02 5.065e-01 -4.498e-02 4 -7.994087281710e+00 7.461e-02 1.336e-01 -1.137e-01 5 -7.998782729146e+00 1.387e-02 8.727e-03 -4.695e-03 6 -7.998813224734e+00 7.063e-04 3.761e-03 -3.050e-05 7 -7.998822702151e+00 7.387e-04 7.425e-04 -9.477e-06 8 -7.998823133780e+00 1.492e-04 4.964e-04 -4.316e-07 9 -7.998823233428e+00 4.409e-05 2.286e-04 -9.965e-08 10 -7.998823269020e+00 3.674e-05 1.774e-04 -3.559e-08 |CLASS_NAME---------|NAME---------------|TIME(Sec)-----|CALLS----|AVG------|PER%------- total 1.9972 21 0.095 1e+02 % Driver driver_line 1.9683 1 2 99 % PW_Basis recip2real 0.40055 991 0.0004 20 % PW_Basis gathers_scatterp 0.20726 991 0.00021 10 % Potential update_from_charge 0.53715 248 0.0022 27 % Potential cal_v_eff 0.53495 248 0.0022 27 % H_Hartree_pw v_hartree 0.31447 248 0.0013 16 % PW_Basis real2recip 0.4229 987 0.00043 21 % PW_Basis gatherp_scatters 0.23617 987 0.00024 12 % PotXC cal_v_eff 0.21184 248 0.00085 11 % XC_Functional v_xc 0.20955 248 0.00084 10 % Ions opt_ions 1.712 1 1.7 86 % ESolver_OF Run 1.7118 1 1.7 86 % KEDF_WT wt_potential 0.70394 246 0.0029 35 % KEDF_vW vw_potential 0.23724 246 0.00096 12 % ---------------------------------------------------------------------------------------- START Time : Tue Aug 22 20:42:49 2023 FINISH Time : Tue Aug 22 20:42:51 2023 TOTAL Time : 2 SEE INFORMATION IN : OUT.scf/
2.3 分子动力学(MD)
INPUT_PARAMETERS #Parameters (1.General) suffix md calculation md esolver_type ofdft pseudo_dir . pseudo_rcut 16 #Parameters (2.Iteration) ecutwfc 60 scf_nmax 100 #OFDFT of_kinetic wt of_method tn of_full_pw_dim 1 #Parameters (3.Basis) basis_type pw md_restart 0 md_type nvt md_nstep 10 md_dt 0.25 md_tfirst 10000 md_dumpfreq 2 md_tfreq 1.08 md_tchain 1 nbspline 10
ABACUS v3.3.2 Atomic-orbital Based Ab-initio Computation at UStc Website: http://abacus.ustc.edu.cn/ Documentation: https://abacus.deepmodeling.com/ Repository: https://github.com/abacusmodeling/abacus-develop https://github.com/deepmodeling/abacus-develop Commit: e39b50efe (Fri Aug 18 16:14:25 2023 +0800) Tue Aug 22 20:43:03 2023 MAKE THE DIR : OUT.md/ MAKE THE STRU DIR : OUT.md/STRU/ Notice: symbol 'Silicon' is not an element symbol!!!! set the covalent radius to be 0. UNIFORM GRID DIM : 45 * 45 * 45 UNIFORM GRID DIM(BIG): 45 * 45 * 45 DONE(0.055818 SEC) : SETUP UNITCELL DONE(0.0603144 SEC) : INIT K-POINTS --------------------------------------------------------- Molecular Dynamics simulations --------------------------------------------------------- ENSEMBLE : NVT mode: nhc Time interval(fs) : 0.25 --------------------------------------------------------- SPIN KPOINTS PROCESSORS 1 1 4 --------------------------------------------------------- Use plane wave basis --------------------------------------------------------- ELEMENT NATOM XC Si 2 --------------------------------------------------------- Initial plane wave basis and FFT box --------------------------------------------------------- DONE(0.0774117 SEC) : INIT BASIS DONE(0.0774318 SEC) : INIT PHI DONE(0.0919941 SEC) : LOCAL POTENTIAL DONE(0.0920122 SEC) : NON-LOCAL POTENTIAL START CHARGE : atomic DONE(0.156747 SEC) : INIT POTENTIAL DONE(0.156772 SEC) : INIT OPTIMIZATION DONE(0.157796 SEC) : INIT KEDF --------------------------------- INITVEL DONE ------------------------------------ ------------------------------------------- STEP OF MOLECULAR DYNAMICS : 0 ------------------------------------------- START CHARGE : atomic ======================== Running OFDFT ======================== Iter Etot(Ha) Theta PotNorm deltaE(Ha) 0 -6.938598046402e+00 2.000e-01 3.294e-01 -6.939e+00 1 -7.939386695914e+00 3.180e-01 4.857e-01 -1.001e+00 2 -7.997660523476e+00 2.777e-02 4.416e-02 -5.827e-02 3 -7.998549631205e+00 5.533e-03 2.099e-02 -8.891e-04 4 -7.998684359848e+00 1.376e-03 1.149e-02 -1.347e-04 5 -7.998800799913e+00 3.146e-03 2.004e-03 -1.164e-04 6 -7.998803276780e+00 3.427e-04 9.273e-04 -2.477e-06 7 -7.998803700218e+00 1.559e-04 2.983e-04 -4.234e-07 8 -7.998803741224e+00 2.989e-05 1.287e-04 -4.101e-08 ------------------------------------------------------------------------------------------------ Energy (Ry) Potential (Ry) Kinetic (Ry) Temperature (K) -1.590e+01 -1.600e+01 9.500e-02 1.000e+04 ------------------------------------------------------------------------------------------------ ------------------------------------------- STEP OF MOLECULAR DYNAMICS : 1 ------------------------------------------- ======================== Running OFDFT ======================== Iter Etot(Ha) Theta PotNorm deltaE(Ha) 0 -6.938572877488e+00 2.000e-01 3.294e-01 1.060e+00 1 -7.939704676856e+00 3.180e-01 4.863e-01 -1.001e+00 2 -7.997664662795e+00 2.764e-02 4.413e-02 -5.796e-02 3 -7.998548611974e+00 5.517e-03 2.097e-02 -8.839e-04 4 -7.998682284857e+00 1.370e-03 1.144e-02 -1.337e-04 5 -7.998797292740e+00 3.113e-03 2.018e-03 -1.150e-04 6 -7.998799384194e+00 2.142e-04 1.617e-03 -2.091e-06 7 -7.998800741531e+00 3.421e-04 1.872e-04 -1.357e-06 8 -7.998800767631e+00 3.627e-05 9.045e-05 -2.610e-08 9 -7.998800771477e+00 1.606e-05 8.983e-06 -3.846e-09 ------------------------------------------- STEP OF MOLECULAR DYNAMICS : 2 ------------------------------------------- ======================== Running OFDFT ======================== Iter Etot(Ha) Theta PotNorm deltaE(Ha) 0 -6.938496855745e+00 2.000e-01 3.294e-01 1.060e+00 1 -7.939746697155e+00 3.181e-01 4.866e-01 -1.001e+00 2 -7.997655746791e+00 2.762e-02 4.415e-02 -5.791e-02 3 -7.998539359435e+00 5.513e-03 2.095e-02 -8.836e-04 4 -7.998673126007e+00 1.370e-03 1.144e-02 -1.338e-04 5 -7.998781399422e+00 2.861e-03 5.872e-03 -1.083e-04 6 -7.998791613953e+00 6.872e-04 4.842e-04 -1.021e-05 7 -7.998791684636e+00 3.346e-05 1.546e-04 -7.068e-08 8 -7.998791695644e+00 2.605e-05 4.523e-05 -1.101e-08 ------------------------------------------------------------------------------------------------ Energy (Ry) Potential (Ry) Kinetic (Ry) Temperature (K) -1.590e+01 -1.600e+01 9.498e-02 9.998e+03 ------------------------------------------------------------------------------------------------ ------------------------------------------- STEP OF MOLECULAR DYNAMICS : 3 ------------------------------------------- ======================== Running OFDFT ======================== Iter Etot(Ha) Theta PotNorm deltaE(Ha) 0 -6.938369214425e+00 2.000e-01 3.294e-01 1.060e+00 1 -7.939484890478e+00 3.181e-01 4.866e-01 -1.001e+00 2 -7.997632508921e+00 2.770e-02 4.428e-02 -5.815e-02 3 -7.998521321648e+00 5.523e-03 2.093e-02 -8.888e-04 4 -7.998656510343e+00 1.380e-03 1.151e-02 -1.352e-04 5 -7.998773412973e+00 3.153e-03 1.937e-03 -1.169e-04 6 -7.998776298814e+00 4.663e-04 2.137e-04 -2.886e-06 7 -7.998776334502e+00 4.645e-05 6.285e-05 -3.569e-08 8 -7.998776336615e+00 1.283e-05 4.781e-06 -2.113e-09 ------------------------------------------- STEP OF MOLECULAR DYNAMICS : 4 ------------------------------------------- ======================== Running OFDFT ======================== Iter Etot(Ha) Theta PotNorm deltaE(Ha) 0 -6.938189193885e+00 2.000e-01 3.294e-01 1.061e+00 1 -7.938919396077e+00 3.181e-01 4.862e-01 -1.001e+00 2 -7.997594394093e+00 2.790e-02 4.448e-02 -5.867e-02 3 -7.998494634256e+00 5.552e-03 2.088e-02 -9.002e-04 4 -7.998679957713e+00 2.262e-03 8.944e-03 -1.853e-04 5 -7.998747084287e+00 2.058e-03 5.355e-03 -6.713e-05 6 -7.998754433763e+00 5.827e-04 3.965e-04 -7.349e-06 7 -7.998754489002e+00 4.324e-05 3.546e-05 -5.524e-08 8 -7.998754489369e+00 2.356e-06 1.376e-05 -3.672e-10 ------------------------------------------------------------------------------------------------ Energy (Ry) Potential (Ry) Kinetic (Ry) Temperature (K) -1.590e+01 -1.600e+01 9.492e-02 9.992e+03 ------------------------------------------------------------------------------------------------ ------------------------------------------- STEP OF MOLECULAR DYNAMICS : 5 ------------------------------------------- ======================== Running OFDFT ======================== Iter Etot(Ha) Theta PotNorm deltaE(Ha) 0 -6.937956036766e+00 2.000e-01 3.294e-01 1.061e+00 1 -7.938074875154e+00 3.180e-01 4.857e-01 -1.000e+00 2 -7.997541871201e+00 2.820e-02 4.465e-02 -5.947e-02 3 -7.998169930544e+00 3.075e-03 2.740e-02 -6.281e-04 4 -7.998721574251e+00 6.612e-03 2.453e-03 -5.516e-04 5 -7.998723671437e+00 1.932e-04 1.724e-03 -2.097e-06 6 -7.998725879578e+00 4.376e-04 2.891e-04 -2.208e-06 7 -7.998725924986e+00 4.079e-05 2.325e-04 -4.541e-08 8 -7.998725942241e+00 2.867e-05 8.232e-05 -1.726e-08 ------------------------------------------- STEP OF MOLECULAR DYNAMICS : 6 ------------------------------------------- ======================== Running OFDFT ======================== Iter Etot(Ha) Theta PotNorm deltaE(Ha) 0 -6.937668982231e+00 2.000e-01 3.294e-01 1.061e+00 1 -7.170966043256e+00 1.242e-01 7.622e-01 -2.333e-01 2 -7.821728551835e+00 1.557e-01 5.231e-01 -6.508e-01 3 -7.925691379979e+00 5.176e-02 3.391e-01 -1.040e-01 4 -7.998438626874e+00 8.194e-02 3.419e-02 -7.275e-02 5 -7.998686660114e+00 2.641e-03 2.253e-03 -2.480e-04 6 -7.998689003970e+00 2.162e-04 1.320e-03 -2.344e-06 7 -7.998690442621e+00 3.715e-04 3.096e-04 -1.439e-06 8 -7.998690477892e+00 3.973e-05 3.066e-05 -3.527e-08 9 -7.998690478727e+00 8.177e-06 8.630e-06 -8.352e-10 ------------------------------------------------------------------------------------------------ Energy (Ry) Potential (Ry) Kinetic (Ry) Temperature (K) -1.590e+01 -1.600e+01 9.486e-02 9.985e+03 ------------------------------------------------------------------------------------------------ ------------------------------------------- STEP OF MOLECULAR DYNAMICS : 7 ------------------------------------------- ======================== Running OFDFT ======================== Iter Etot(Ha) Theta PotNorm deltaE(Ha) 0 -6.937327260477e+00 2.000e-01 3.294e-01 1.061e+00 1 -7.157604680837e+00 1.198e-01 7.476e-01 -2.203e-01 2 -7.816804672677e+00 1.584e-01 5.271e-01 -6.592e-01 3 -7.924134286989e+00 5.247e-02 3.411e-01 -1.073e-01 4 -7.998433806662e+00 8.299e-02 3.169e-02 -7.430e-02 5 -7.998644653310e+00 2.472e-03 2.252e-03 -2.108e-04 6 -7.998646776667e+00 2.344e-04 1.209e-03 -2.123e-06 7 -7.998647348727e+00 1.194e-04 7.278e-04 -5.721e-07 8 -7.998647794819e+00 1.848e-04 5.270e-04 -4.461e-07 9 -7.998647848533e+00 2.136e-05 1.031e-04 -5.371e-08 ------------------------------------------- STEP OF MOLECULAR DYNAMICS : 8 ------------------------------------------- ======================== Running OFDFT ======================== Iter Etot(Ha) Theta PotNorm deltaE(Ha) 0 -6.936930088416e+00 2.000e-01 3.294e-01 1.062e+00 1 -7.159048955537e+00 1.205e-01 7.500e-01 -2.221e-01 2 -7.817478117136e+00 1.581e-01 5.257e-01 -6.584e-01 3 -7.924376920616e+00 5.240e-02 3.408e-01 -1.069e-01 4 -7.998384384900e+00 8.281e-02 3.159e-02 -7.401e-02 5 -7.998594634305e+00 2.476e-03 2.274e-03 -2.102e-04 6 -7.998596373596e+00 1.688e-04 1.416e-03 -1.739e-06 7 -7.998597744310e+00 3.445e-04 5.199e-04 -1.371e-06 8 -7.998597849254e+00 6.863e-05 4.682e-05 -1.049e-07 9 -7.998597850577e+00 8.908e-06 8.308e-06 -1.323e-09 ------------------------------------------------------------------------------------------------ Energy (Ry) Potential (Ry) Kinetic (Ry) Temperature (K) -1.590e+01 -1.600e+01 9.482e-02 9.981e+03 ------------------------------------------------------------------------------------------------ ------------------------------------------- STEP OF MOLECULAR DYNAMICS : 9 ------------------------------------------- ======================== Running OFDFT ======================== Iter Etot(Ha) Theta PotNorm deltaE(Ha) 0 -6.936476668267e+00 2.000e-01 3.295e-01 1.062e+00 1 -7.179368483785e+00 1.278e-01 7.714e-01 -2.429e-01 2 -7.824787769835e+00 1.540e-01 5.206e-01 -6.454e-01 3 -7.926610986416e+00 5.131e-02 3.377e-01 -1.018e-01 4 -7.986914989180e+00 6.191e-02 1.793e-01 -6.030e-02 5 -7.995131770759e+00 9.570e-03 7.265e-02 -8.217e-03 6 -7.998069895185e+00 1.532e-02 4.279e-02 -2.938e-03 7 -7.998411215248e+00 1.805e-03 1.226e-02 -3.413e-04 8 -7.998539659280e+00 3.478e-03 1.388e-03 -1.284e-04 9 -7.998540180485e+00 1.079e-04 1.430e-04 -5.212e-07 10 -7.998540187184e+00 1.186e-05 6.027e-05 -6.699e-09 11 -7.998540190098e+00 1.602e-05 4.794e-06 -2.915e-09 ------------------------------------------- STEP OF MOLECULAR DYNAMICS : 10 ------------------------------------------- ======================== Running OFDFT ======================== Iter Etot(Ha) Theta PotNorm deltaE(Ha) 0 -6.935966188000e+00 2.000e-01 3.295e-01 1.063e+00 1 -7.937761323062e+00 3.186e-01 4.874e-01 -1.002e+00 2 -7.997278135993e+00 2.814e-02 4.495e-02 -5.952e-02 3 -7.998206630944e+00 5.661e-03 2.120e-02 -9.285e-04 4 -7.998367361732e+00 1.715e-03 1.177e-02 -1.607e-04 5 -7.998455241678e+00 2.303e-03 7.887e-03 -8.788e-05 6 -7.998474478048e+00 9.712e-04 6.064e-04 -1.924e-05 7 -7.998474568534e+00 3.606e-05 2.772e-04 -9.049e-08 8 -7.998474612470e+00 5.831e-05 4.496e-05 -4.394e-08 ------------------------------------------------------------------------------------------------ Energy (Ry) Potential (Ry) Kinetic (Ry) Temperature (K) -1.590e+01 -1.600e+01 9.483e-02 9.981e+03 ------------------------------------------------------------------------------------------------ |CLASS_NAME---------|NAME---------------|TIME(Sec)-----|CALLS----|AVG------|PER%------- total 36.749 19 1.9 1e+02 % Driver driver_line 36.714 1 37 1e+02 % PW_Basis real2recip 8.0107 10254 0.00078 22 % PW_Basis gatherp_scatters 3.0266 10254 0.0003 8.2 % Charge atomic_rho 0.95839 23 0.042 2.6 % PW_Basis recip2real 8.4473 10267 0.00082 23 % PW_Basis gathers_scatterp 3.5315 10267 0.00034 9.6 % Potential update_from_charge 10.405 2567 0.0041 28 % Potential cal_v_eff 10.387 2567 0.004 28 % H_Hartree_pw v_hartree 6.2576 2567 0.0024 17 % PotXC cal_v_eff 3.9467 2567 0.0015 11 % XC_Functional v_xc 3.8875 2567 0.0015 11 % Run_MD md_line 36.59 1 37 1e+02 % Nose_Hoover setup 2.8558 1 2.9 7.8 % MD_func force_virial 36.507 11 3.3 99 % ESolver_OF Run 36.464 11 3.3 99 % KEDF_TF tf_potential 1.9823 2555 0.00078 5.4 % KEDF_WT wt_potential 14.735 2555 0.0058 40 % KEDF_vW vw_potential 4.8693 2555 0.0019 13 % ---------------------------------------------------------------------------------------- START Time : Tue Aug 22 20:43:03 2023 FINISH Time : Tue Aug 22 20:43:40 2023 TOTAL Time : 37 SEE INFORMATION IN : OUT.md/
三、参考文献
[1] Fermi E. Statistical method to determine some properties of atoms[J]. Rend. Accad. Naz. Lincei, 1927, 6(602-607): 5.
[2] Weizsäcker C F. Zur theorie der kernmassen[J]. Zeitschrift für Physik, 1935, 96(7-8): 431-458.
[3] Berk A. Lower-bound energy functionals and their application to diatomic systems[J]. Physical Review A, 1983, 28(4): 1908.
[4] Wang L W, Teter M P. Kinetic-energy functional of the electron density[J]. Physical Review B, 1992, 45(23): 13196.
[5] Luo K, Karasiev V V, Trickey S B. A simple generalized gradient approximation for the noninteracting kinetic energy density functional[J]. Physical Review B, 2018, 98(4): 041111.
![](https://cdn1.deepmd.net/static/img/d7d9741bda38a158-957c-4877-942f-4bf6f81fcc63.png?x-oss-process=image/resize,w_100,m_lfit)
![](https://cdn1.deepmd.net/bohrium/web/static/images/level-v2-1.png?x-oss-process=image/resize,w_50,m_lfit)
![](https://cdn1.deepmd.net/static/img/d7d9741bda38a158-957c-4877-942f-4bf6f81fcc63.png?x-oss-process=image/resize,w_100,m_lfit)
![](https://cdn1.deepmd.net/bohrium/web/static/images/level-v2-1.png?x-oss-process=image/resize,w_50,m_lfit)
![](https://cdn1.deepmd.net/static/img/d7d9741bda38a158-957c-4877-942f-4bf6f81fcc63.png?x-oss-process=image/resize,w_100,m_lfit)
![](https://cdn1.deepmd.net/bohrium/web/static/images/level-v2-1.png?x-oss-process=image/resize,w_50,m_lfit)
![](https://cdn1.deepmd.net/static/img/d7d9741bda38a158-957c-4877-942f-4bf6f81fcc63.png?x-oss-process=image/resize,w_100,m_lfit)
![](https://cdn1.deepmd.net/bohrium/web/static/images/level-v2-1.png?x-oss-process=image/resize,w_50,m_lfit)