新建
Uni-MOF: A Tool for Predicting the Full Adsorption Phase Diagram of MOF Materials
Yani Guan
推荐镜像 :Uni-Mol:unimol-qsar:v0.5
推荐机型 :c2_m4_cpu
赞
目录
数据集
AI4SCUP-CNS-BBB(v1)
Uni-MOF: A Tool for Predicting the Full Adsorption Phase Diagram of MOF Materials
©️ Copyright 2023 @ Authors
Author:
Zhifeng Gao 📨
Date: 2023-06-06
License: This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Quick Start: Click the Connect button above, select the unimol-qsar:0530 image and any GPU node configuration, then wait a moment to start running.
代码
文本
import Uni-MOF
代码
文本
[1]
# image:unimol-qsar:v0.5, GPU
# import unimol
from unimol import MOFPredictor
import os
/opt/conda/lib/python3.8/site-packages/tqdm/auto.py:22: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html from .autonotebook import tqdm as notebook_tqdm
代码
文本
[2]
%%bash
# Download sample data, MOF core database. The data source is quite large and will take about 3 minutes to download. Once the download is complete, you can comment out this section.
rm -rf mof_database
rm -rf mof_database.tar.gz
wget -nv https://bohrium-example.oss-cn-zhangjiakou.aliyuncs.com/unimol-qsar/mof_database.tar.gz
tar --no-same-owner -xzf mof_database.tar.gz
find ./mof_database -type f > mof_name.txt
2024-07-23 15:20:47 URL:https://bohrium-example.oss-cn-zhangjiakou.aliyuncs.com/unimol-qsar/mof_database.tar.gz [28528154/28528154] -> "mof_database.tar.gz" [1]
代码
文本
[3]
!shuf -n 10 mof_name.txt
./mof_database/XAGCUE_clean.cif ./mof_database/WAGDAL_clean.cif ./mof_database/ic501898x_si_005_clean.cif ./mof_database/ACUTOI_clean.cif ./mof_database/AMOFAK_clean.cif ./mof_database/NEJSEC_clean.cif ./mof_database/LUCDES_clean.cif ./mof_database/DUQCAU_clean.cif ./mof_database/IYOVIC_clean.cif ./mof_database/QITDOO_clean.cif
代码
文本
MOF Performance Prediction Under Different Conditions
代码
文本
[4]
clf = MOFPredictor()
gas_list = ['CH4','CO2','Ar','Kr','Xe','O2','He','N2','H2']
gas = 'CH4'
cif_dir = './mof_database'
mof_name = 'FAQLUH_clean'
res = clf.predict_grid(cif_path=os.path.join(cif_dir, f'{mof_name}.cif'),
gas=gas,
temperature_list=[190,298],
pressure_bins=8)
2024-07-23 15:20:49 | unimol/models/unimol.py | 111 | INFO | Uni-Mol(QSAR) | Loading pretrained weights from /opt/conda/lib/python3.8/site-packages/unimol-0.0.2-py3.8.egg/unimol/weights/mof_pre_no_h_CORE_MAP_20230505.pt
代码
文本
[5]
res
temperature | pressure | absorp_prediction | gas | mof | |
---|---|---|---|---|---|
0 | 190 | 1.000000 | 0.058289 | CH4 | FAQLUH_clean.cif |
1 | 190 | 5.179475 | 0.179443 | CH4 | FAQLUH_clean.cif |
2 | 190 | 26.826958 | 1.232422 | CH4 | FAQLUH_clean.cif |
3 | 190 | 138.949549 | 4.527344 | CH4 | FAQLUH_clean.cif |
4 | 190 | 719.685673 | 30.718750 | CH4 | FAQLUH_clean.cif |
5 | 190 | 3727.593720 | 144.000000 | CH4 | FAQLUH_clean.cif |
6 | 190 | 19306.977289 | 208.250000 | CH4 | FAQLUH_clean.cif |
7 | 190 | 100000.000000 | 239.875000 | CH4 | FAQLUH_clean.cif |
8 | 298 | 1.000000 | 0.034760 | CH4 | FAQLUH_clean.cif |
9 | 298 | 5.179475 | 0.019730 | CH4 | FAQLUH_clean.cif |
10 | 298 | 26.826958 | 0.044922 | CH4 | FAQLUH_clean.cif |
11 | 298 | 138.949549 | 0.057251 | CH4 | FAQLUH_clean.cif |
12 | 298 | 719.685673 | 0.297852 | CH4 | FAQLUH_clean.cif |
13 | 298 | 3727.593720 | 2.353516 | CH4 | FAQLUH_clean.cif |
14 | 298 | 19306.977289 | 9.218750 | CH4 | FAQLUH_clean.cif |
15 | 298 | 100000.000000 | 43.218750 | CH4 | FAQLUH_clean.cif |
代码
文本
Prediction of MOF Adsorption Properties
Predicting adsorption performance based on the given MOF structure, gas molecules, temperature, and pressure.
代码
文本
[6]
clf = MOFPredictor()
gas_list = ['CH4','CO2','Ar','Kr','Xe','O2','He','N2','H2']
cif_dir = './mof_database'
gas = 'CH4'
mof_name = 'FAQLUH_clean'
pressure = 10000
temperature = 298
assert gas in gas_list
assert pressure<100000 and pressure>0
assert temperature>0 and temperature<400
s = clf.single_predict(cif_path=os.path.join(cif_dir, f'{mof_name}.cif'),
gas=gas,
pressure=pressure,
temperature=temperature)
print(f'gas:{gas}-pressure:{pressure}-temperature:{temperature}-absorb_predict: {s}')
2024-07-23 15:20:53 | unimol/models/unimol.py | 111 | INFO | Uni-Mol(QSAR) | Loading pretrained weights from /opt/conda/lib/python3.8/site-packages/unimol-0.0.2-py3.8.egg/unimol/weights/mof_pre_no_h_CORE_MAP_20230505.pt gas:CH4-pressure:10000-temperature:298-absorb_predict: 3.977489017487298
代码
文本
[ ]
代码
文本
点个赞吧
推荐阅读
公开
Uni-MOF:MOF材料吸附全相图预测工具zhengh@dp.tech
更新于 2024-07-23
2 赞7 转存文件
公开
蒙亦有道:使用共形预测让机器学习模型输出可靠结果Weiliang Luo
更新于 2024-06-19
6 赞5 转存文件