Bohrium
robot
新建

空间站广场

论文
Notebooks
比赛
课程
Apps
我的主页
我的Notebooks
我的论文库
我的足迹

我的工作空间

任务
节点
文件
数据集
镜像
项目
数据库
公开
Uni-MOF: A Tool for Predicting the Full Adsorption Phase Diagram of MOF Materials
Yani Guan
更新于 2024-10-18
推荐镜像 :Uni-Mol:unimol-qsar:v0.5
推荐机型 :c2_m4_cpu
AI4SCUP-CNS-BBB(v1)

Uni-MOF: A Tool for Predicting the Full Adsorption Phase Diagram of MOF Materials

©️ Copyright 2023 @ Authors
Author: Zhifeng Gao 📨
Date: 2023-06-06
License: This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Quick Start: Click the Connect button above, select the unimol-qsar:0530 image and any GPU node configuration, then wait a moment to start running.

代码
文本

import Uni-MOF

代码
文本
[1]
# image:unimol-qsar:v0.5, GPU
# import unimol
from unimol import MOFPredictor
import os
/opt/conda/lib/python3.8/site-packages/tqdm/auto.py:22: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html
  from .autonotebook import tqdm as notebook_tqdm
代码
文本
[2]
%%bash
# Download sample data, MOF core database. The data source is quite large and will take about 3 minutes to download. Once the download is complete, you can comment out this section.
rm -rf mof_database
rm -rf mof_database.tar.gz
wget -nv https://bohrium-example.oss-cn-zhangjiakou.aliyuncs.com/unimol-qsar/mof_database.tar.gz
tar --no-same-owner -xzf mof_database.tar.gz
find ./mof_database -type f > mof_name.txt
2024-07-23 15:20:47 URL:https://bohrium-example.oss-cn-zhangjiakou.aliyuncs.com/unimol-qsar/mof_database.tar.gz [28528154/28528154] -> "mof_database.tar.gz" [1]
代码
文本
[3]
!shuf -n 10 mof_name.txt
./mof_database/XAGCUE_clean.cif
./mof_database/WAGDAL_clean.cif
./mof_database/ic501898x_si_005_clean.cif
./mof_database/ACUTOI_clean.cif
./mof_database/AMOFAK_clean.cif
./mof_database/NEJSEC_clean.cif
./mof_database/LUCDES_clean.cif
./mof_database/DUQCAU_clean.cif
./mof_database/IYOVIC_clean.cif
./mof_database/QITDOO_clean.cif
代码
文本

MOF Performance Prediction Under Different Conditions

代码
文本
[4]
clf = MOFPredictor()
gas_list = ['CH4','CO2','Ar','Kr','Xe','O2','He','N2','H2']
gas = 'CH4'
cif_dir = './mof_database'
mof_name = 'FAQLUH_clean'
res = clf.predict_grid(cif_path=os.path.join(cif_dir, f'{mof_name}.cif'),
gas=gas,
temperature_list=[190,298],
pressure_bins=8)
2024-07-23 15:20:49 | unimol/models/unimol.py | 111 | INFO | Uni-Mol(QSAR) | Loading pretrained weights from /opt/conda/lib/python3.8/site-packages/unimol-0.0.2-py3.8.egg/unimol/weights/mof_pre_no_h_CORE_MAP_20230505.pt
代码
文本
[5]
res
temperature pressure absorp_prediction gas mof
0 190 1.000000 0.058289 CH4 FAQLUH_clean.cif
1 190 5.179475 0.179443 CH4 FAQLUH_clean.cif
2 190 26.826958 1.232422 CH4 FAQLUH_clean.cif
3 190 138.949549 4.527344 CH4 FAQLUH_clean.cif
4 190 719.685673 30.718750 CH4 FAQLUH_clean.cif
5 190 3727.593720 144.000000 CH4 FAQLUH_clean.cif
6 190 19306.977289 208.250000 CH4 FAQLUH_clean.cif
7 190 100000.000000 239.875000 CH4 FAQLUH_clean.cif
8 298 1.000000 0.034760 CH4 FAQLUH_clean.cif
9 298 5.179475 0.019730 CH4 FAQLUH_clean.cif
10 298 26.826958 0.044922 CH4 FAQLUH_clean.cif
11 298 138.949549 0.057251 CH4 FAQLUH_clean.cif
12 298 719.685673 0.297852 CH4 FAQLUH_clean.cif
13 298 3727.593720 2.353516 CH4 FAQLUH_clean.cif
14 298 19306.977289 9.218750 CH4 FAQLUH_clean.cif
15 298 100000.000000 43.218750 CH4 FAQLUH_clean.cif
代码
文本

Prediction of MOF Adsorption Properties

Predicting adsorption performance based on the given MOF structure, gas molecules, temperature, and pressure.

代码
文本
[6]
clf = MOFPredictor()
gas_list = ['CH4','CO2','Ar','Kr','Xe','O2','He','N2','H2']
cif_dir = './mof_database'
gas = 'CH4'
mof_name = 'FAQLUH_clean'
pressure = 10000
temperature = 298
assert gas in gas_list
assert pressure<100000 and pressure>0
assert temperature>0 and temperature<400
s = clf.single_predict(cif_path=os.path.join(cif_dir, f'{mof_name}.cif'),
gas=gas,
pressure=pressure,
temperature=temperature)
print(f'gas:{gas}-pressure:{pressure}-temperature:{temperature}-absorb_predict: {s}')
2024-07-23 15:20:53 | unimol/models/unimol.py | 111 | INFO | Uni-Mol(QSAR) | Loading pretrained weights from /opt/conda/lib/python3.8/site-packages/unimol-0.0.2-py3.8.egg/unimol/weights/mof_pre_no_h_CORE_MAP_20230505.pt
gas:CH4-pressure:10000-temperature:298-absorb_predict: 3.977489017487298
代码
文本
[ ]

代码
文本
点个赞吧
推荐阅读
公开
Uni-MOF:MOF材料吸附全相图预测工具
Machine LearningTutorial中文Uni-MolnotebookQSAR
Machine LearningTutorial中文Uni-MolnotebookQSAR
zhengh@dp.tech
更新于 2024-07-23
2 赞7 转存文件
公开
蒙亦有道:使用共形预测让机器学习模型输出可靠结果
Machine Learning中文
Machine Learning中文
Weiliang Luo
更新于 2024-06-19
6 赞5 转存文件
{/**/}