Bohrium
robot
新建

空间站广场

论文
Notebooks
比赛
课程
Apps
我的主页
我的Notebooks
我的论文库
我的足迹

我的工作空间

任务
节点
文件
数据集
镜像
项目
数据库
公开
AI4S Cup -LLM挑战赛 - 多模态表格识别与理解-解决方案-nano团队-训练代码
AI4SCUP-LLMTable
ai4scup-llm
AI4SCUP-LLMTableai4scup-llm
John Yan
bohre684ec
更新于 2024-10-10
推荐镜像 :Basic Image:ubuntu:22.04-py3.10-cuda12.1
推荐机型 :c2_m4_cpu
table-sft(v1)

1. 数据集准备

代码
文本

数据集来源于开源数据集https://huggingface.co/datasets/cmarkea/table-vqa

调用spark max api将其中的问答题添加干扰项变成选择题,重新整理数据集格式。

数据集已挂载在notebook中:/bohr/table-sft-lwgd/v1/sft_v2.jsonl

代码
文本

2. 使用xtuner进行Lora微调

代码
文本

2.1修改训练config.py

代码
文本
# Copyright (c) OpenMMLab. All rights reserved.
import torch
from datasets import load_dataset
from mmengine.dataset import DefaultSampler
from mmengine.hooks import (CheckpointHook, DistSamplerSeedHook, IterTimerHook,
                            LoggerHook, ParamSchedulerHook)
from mmengine.optim import AmpOptimWrapper, CosineAnnealingLR, LinearLR
from peft import LoraConfig
from torch.optim import AdamW
from transformers import (AutoModelForCausalLM, AutoTokenizer,
                          BitsAndBytesConfig)

from xtuner.dataset import process_hf_dataset
from xtuner.dataset.collate_fns import default_collate_fn
from xtuner.dataset.map_fns import alpaca_map_fn, template_map_fn_factory
from xtuner.engine.hooks import (DatasetInfoHook, EvaluateChatHook,
                                 VarlenAttnArgsToMessageHubHook)
from xtuner.engine.runner import TrainLoop
from xtuner.model import SupervisedFinetune
from xtuner.parallel.sequence import SequenceParallelSampler
from xtuner.utils import PROMPT_TEMPLATE, SYSTEM_TEMPLATE

#######################################################################
#                          PART 1  Settings                           #
#######################################################################
# Model
pretrained_model_name_or_path = 'qwen2.5/Qwen2___5-14B-Instruct'
use_varlen_attn = False

# Data
data_path = 'sft_v2.jsonl'
prompt_template = PROMPT_TEMPLATE.qwen_chat
max_length = 2048
pack_to_max_length = True

# parallel
sequence_parallel_size = 1

# Scheduler & Optimizer
batch_size = 2  # per_device
accumulative_counts = 16
accumulative_counts *= sequence_parallel_size
dataloader_num_workers = 0
max_epochs = 3
optim_type = AdamW
lr = 2e-4
betas = (0.9, 0.999)
weight_decay = 0
max_norm = 1  # grad clip
warmup_ratio = 0.03

# Save
save_steps = 500
save_total_limit = 2  # Maximum checkpoints to keep (-1 means unlimited)

# Evaluate the generation performance during the training
evaluation_freq = 500
SYSTEM = 'You are an AI assistant specialized in analyzing tables and answering related questions.'
evaluation_inputs = [
    "This table is represented by the LaTeX code: \"\\begin{tabular}{ |  c| c |  c | c|} \n  \\hline\n  Year & \\# of days predicted & \\# of non-moist days & success rate \\\\ \n  \\hline\n  2020 & 22 & 30 & 73.3 \\% \\\\ \n  \\hline\n  2019 &17 & 27 &  63.0\\% \\\\ \n  \\hline\n  2018  & 21 & 29 & 72.4 \\%  \\\\ \n  \\hline\n  2017  & 18 & 26 &  69.2\\% \\\\ \n  \\hline\n\\end{tabular}\" with the caption: \"Success rate yearly\". Based on the table, along with the following question and options:\nQuestion: \"What is the highest success rate achieved for predicting non-moist days?\"\nOption 0: \"The highest success rate is 72.4% achieved in 2018.\"\nOption 1: \"The highest success rate is 73.3% achieved in 2020.\"\nOption 2: \"The highest success rate is 69.2% achieved in 2017.\"\nOption 3: \"The highest success rate is 63.0% achieved in 2019.\"\nWhich subject does the table's content most likely relate to? Choose one from (Physics, Mathematics, ComputerScience, QuantitativeBiology, QuantitativeFinance, Statistics, ElectricalEngineeringandSystemsScience, Economics).",
    "Question: \"What is the highest success rate achieved for predicting non-moist days?\"\nOption 0: \"The highest success rate is 72.4% achieved in 2018.\"\nOption 1: \"The highest success rate is 73.3% achieved in 2020.\"\nOption 2: \"The highest success rate is 69.2% achieved in 2017.\"\nOption 3: \"The highest success rate is 63.0% achieved in 2019.\"\nBased on the table and the related information, select the correct answer from the options (0, 1, 2, or 3)."
]

#######################################################################
#                      PART 2  Model & Tokenizer                      #
#######################################################################
tokenizer = dict(
    type=AutoTokenizer.from_pretrained,
    pretrained_model_name_or_path=pretrained_model_name_or_path,
    trust_remote_code=True,
    padding_side='right')

model = dict(
    type=SupervisedFinetune,
    use_varlen_attn=use_varlen_attn,
    llm=dict(
        type=AutoModelForCausalLM.from_pretrained,
        pretrained_model_name_or_path=pretrained_model_name_or_path,
        trust_remote_code=True,
        torch_dtype=torch.float16,
        quantization_config=dict(
            type=BitsAndBytesConfig,
            load_in_4bit=True,
            load_in_8bit=False,
            llm_int8_threshold=6.0,
            llm_int8_has_fp16_weight=False,
            bnb_4bit_compute_dtype=torch.float16,
            bnb_4bit_use_double_quant=True,
            bnb_4bit_quant_type='nf4')),
    lora=dict(
        type=LoraConfig,
        r=64,
        lora_alpha=16,
        lora_dropout=0.1,
        bias='none',
        task_type='CAUSAL_LM'))

#######################################################################
#                      PART 3  Dataset & Dataloader                   #
#######################################################################
train_dataset = dict(
    type=process_hf_dataset,
    dataset=dict(type=load_dataset, path='json', data_files=dict(train=data_path)),
    tokenizer=tokenizer,
    max_length=max_length,
    dataset_map_fn=None,
    template_map_fn=dict(
        type=template_map_fn_factory, template=prompt_template),
    remove_unused_columns=True,
    shuffle_before_pack=True,
    pack_to_max_length=pack_to_max_length,
    use_varlen_attn=use_varlen_attn)

sampler = SequenceParallelSampler \
    if sequence_parallel_size > 1 else DefaultSampler

train_dataloader = dict(
    batch_size=batch_size,
    num_workers=dataloader_num_workers,
    dataset=train_dataset,
    sampler=dict(type=sampler, shuffle=True),
    collate_fn=dict(type=default_collate_fn, use_varlen_attn=use_varlen_attn))

#######################################################################
#                    PART 4  Scheduler & Optimizer                    #
#######################################################################
# optimizer
optim_wrapper = dict(
    type=AmpOptimWrapper,
    optimizer=dict(
        type=optim_type, lr=lr, betas=betas, weight_decay=weight_decay),
    clip_grad=dict(max_norm=max_norm, error_if_nonfinite=False),
    accumulative_counts=accumulative_counts,
    loss_scale='dynamic',
    dtype='float16')

# learning policy
# More information: https://github.com/open-mmlab/mmengine/blob/main/docs/en/tutorials/param_scheduler.md  # noqa: E501
param_scheduler = [
    dict(
        type=LinearLR,
        start_factor=1e-5,
        by_epoch=True,
        begin=0,
        end=warmup_ratio * max_epochs,
        convert_to_iter_based=True),
    dict(
        type=CosineAnnealingLR,
        eta_min=0.0,
        by_epoch=True,
        begin=warmup_ratio * max_epochs,
        end=max_epochs,
        convert_to_iter_based=True)
]

# train, val, test setting
train_cfg = dict(type=TrainLoop, max_epochs=max_epochs)

#######################################################################
#                           PART 5  Runtime                           #
#######################################################################
# Log the dialogue periodically during the training process, optional
custom_hooks = [
    dict(type=DatasetInfoHook, tokenizer=tokenizer),
    dict(
        type=EvaluateChatHook,
        tokenizer=tokenizer,
        every_n_iters=evaluation_freq,
        evaluation_inputs=evaluation_inputs,
        system=SYSTEM,
        prompt_template=prompt_template)
]

if use_varlen_attn:
    custom_hooks += [dict(type=VarlenAttnArgsToMessageHubHook)]

# configure default hooks
default_hooks = dict(
    # record the time of every iteration.
    timer=dict(type=IterTimerHook),
    # print log every 10 iterations.
    logger=dict(type=LoggerHook, log_metric_by_epoch=False, interval=10),
    # enable the parameter scheduler.
    param_scheduler=dict(type=ParamSchedulerHook),
    # save checkpoint per `save_steps`.
    checkpoint=dict(
        type=CheckpointHook,
        by_epoch=False,
        interval=save_steps,
        max_keep_ckpts=save_total_limit),
    # set sampler seed in distributed evrionment.
    sampler_seed=dict(type=DistSamplerSeedHook),
)

# configure environment
env_cfg = dict(
    # whether to enable cudnn benchmark
    cudnn_benchmark=False,
    # set multi process parameters
    mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0),
    # set distributed parameters
    dist_cfg=dict(backend='nccl'),
)

# set visualizer
visualizer = None

# set log level
log_level = 'INFO'

# load from which checkpoint
load_from = None

# whether to resume training from the loaded checkpoint
resume = False

# Defaults to use random seed and disable `deterministic`
randomness = dict(seed=None, deterministic=False)

# set log processor
log_processor = dict(by_epoch=False)
代码
文本

2.2 执行训练

代码
文本
[ ]
NPROC_PER_NODE=1 xtuner train config.py --work-dir ./qwen2.5-14b-ft --deepspeed deepspeed_zero3
代码
文本

2.3 转为hf格式

代码
文本
[ ]
xtuner convert pth_to_hf config.py ./qwen2.5-14b-ft/iter_9351.pth sft-model/qwen2.5-14b-v1 --max-shard-size 4GB
代码
文本

2.4 合并模型

代码
文本
[ ]
xtuner convert merge qwen2.5/Qwen2___5-14B-Instruct sft-model/qwen2.5-14b-v1 sft-model/Qwen2___5-14B-Instruct
代码
文本
AI4SCUP-LLMTable
ai4scup-llm
AI4SCUP-LLMTableai4scup-llm
点个赞吧
推荐阅读
公开
AI4S Cup - LLM挑战赛 - 多模态表格识别与理解-解决方案-[zygk]-训练代码
多模态表格理解AI4SCUP-LLMTable
多模态表格理解AI4SCUP-LLMTable
zygk
更新于 2024-10-10
1 转存文件
公开
AI4S Cup - LLM挑战赛 - 表格识别比赛测试 - InternVL2-1B
ai4scup-llmAI4SCUP-LLMTable
ai4scup-llmAI4SCUP-LLMTable
SeeFun4Sci
更新于 2024-08-31
3 赞12 转存文件