新建
Colab_Demo
xuxh@dp.tech
推荐镜像 :Basic Image:bohrium-notebook:2023-04-07
推荐机型 :c2_m4_cpu
赞
目录
©️ Copyright 2023 @ Authors
作者:xuebinqin
共享协议:本作品采用知识共享署名-非商业性使用-相同方式共享 4.0 国际许可协议进行许可。
快速开始:点击上方的 开始连接 按钮,选择 bohrium-notebook:2023-04-07镜像及任意CPU节点配置,稍等片刻即可运行。
代码
文本
Clone official repo
代码
文本
[1]
! git clone https://github.com/xuebinqin/DIS
%cd ./DIS/IS-Net
!pip install gdown
Cloning into 'DIS'... remote: Enumerating objects: 151, done. remote: Counting objects: 100% (116/116), done. remote: Compressing objects: 100% (83/83), done. remote: Total 151 (delta 35), reused 108 (delta 30), pack-reused 35 Receiving objects: 100% (151/151), 43.23 MiB | 34.50 MiB/s, done. Resolving deltas: 100% (37/37), done. /content/DIS/IS-Net Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/ Requirement already satisfied: gdown in /usr/local/lib/python3.7/dist-packages (4.4.0) Requirement already satisfied: beautifulsoup4 in /usr/local/lib/python3.7/dist-packages (from gdown) (4.6.3) Requirement already satisfied: six in /usr/local/lib/python3.7/dist-packages (from gdown) (1.15.0) Requirement already satisfied: tqdm in /usr/local/lib/python3.7/dist-packages (from gdown) (4.64.0) Requirement already satisfied: filelock in /usr/local/lib/python3.7/dist-packages (from gdown) (3.7.1) Requirement already satisfied: requests[socks] in /usr/local/lib/python3.7/dist-packages (from gdown) (2.23.0) Requirement already satisfied: chardet<4,>=3.0.2 in /usr/local/lib/python3.7/dist-packages (from requests[socks]->gdown) (3.0.4) Requirement already satisfied: urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 in /usr/local/lib/python3.7/dist-packages (from requests[socks]->gdown) (1.24.3) Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.7/dist-packages (from requests[socks]->gdown) (2022.6.15) Requirement already satisfied: idna<3,>=2.5 in /usr/local/lib/python3.7/dist-packages (from requests[socks]->gdown) (2.10) Requirement already satisfied: PySocks!=1.5.7,>=1.5.6 in /usr/local/lib/python3.7/dist-packages (from requests[socks]->gdown) (1.7.1)
代码
文本
Imports
代码
文本
[2]
import numpy as np
from PIL import Image
import torch
from torch.autograd import Variable
from torchvision import transforms
import torch.nn.functional as F
import gdown
import os
import requests
import matplotlib.pyplot as plt
from io import BytesIO
# project imports
from data_loader_cache import normalize, im_reader, im_preprocess
from models import *
/usr/local/lib/python3.7/dist-packages/torch/nn/_reduction.py:42: UserWarning: size_average and reduce args will be deprecated, please use reduction='mean' instead. warnings.warn(warning.format(ret))
代码
文本
Helpers
代码
文本
[3]
device = 'cuda' if torch.cuda.is_available() else 'cpu'
# Download official weights
if not os.path.exists("./saved_models"):
!mkdir ./saved_models
MODEL_PATH_URL = "https://drive.google.com/uc?id=1KyMpRjewZdyYfxHPYcd-ZbanIXtin0Sn"
gdown.download(MODEL_PATH_URL, "./saved_models/isnet.pth", use_cookies=False)
class GOSNormalize(object):
'''
Normalize the Image using torch.transforms
'''
def __init__(self, mean=[0.485,0.456,0.406], std=[0.229,0.224,0.225]):
self.mean = mean
self.std = std
def __call__(self,image):
image = normalize(image,self.mean,self.std)
return image
transform = transforms.Compose([GOSNormalize([0.5,0.5,0.5],[1.0,1.0,1.0])])
def load_image(im_path, hypar):
if im_path.startswith("http"):
im_path = BytesIO(requests.get(im_path).content)
im = im_reader(im_path)
im, im_shp = im_preprocess(im, hypar["cache_size"])
im = torch.divide(im,255.0)
shape = torch.from_numpy(np.array(im_shp))
return transform(im).unsqueeze(0), shape.unsqueeze(0) # make a batch of image, shape
def build_model(hypar,device):
net = hypar["model"]#GOSNETINC(3,1)
# convert to half precision
if(hypar["model_digit"]=="half"):
net.half()
for layer in net.modules():
if isinstance(layer, nn.BatchNorm2d):
layer.float()
net.to(device)
if(hypar["restore_model"]!=""):
net.load_state_dict(torch.load(hypar["model_path"]+"/"+hypar["restore_model"],map_location=device))
net.to(device)
net.eval()
return net
def predict(net, inputs_val, shapes_val, hypar, device):
'''
Given an Image, predict the mask
'''
net.eval()
if(hypar["model_digit"]=="full"):
inputs_val = inputs_val.type(torch.FloatTensor)
else:
inputs_val = inputs_val.type(torch.HalfTensor)
inputs_val_v = Variable(inputs_val, requires_grad=False).to(device) # wrap inputs in Variable
ds_val = net(inputs_val_v)[0] # list of 6 results
pred_val = ds_val[0][0,:,:,:] # B x 1 x H x W # we want the first one which is the most accurate prediction
## recover the prediction spatial size to the orignal image size
pred_val = torch.squeeze(F.upsample(torch.unsqueeze(pred_val,0),(shapes_val[0][0],shapes_val[0][1]),mode='bilinear'))
ma = torch.max(pred_val)
mi = torch.min(pred_val)
pred_val = (pred_val-mi)/(ma-mi) # max = 1
if device == 'cuda': torch.cuda.empty_cache()
return (pred_val.detach().cpu().numpy()*255).astype(np.uint8) # it is the mask we need
Downloading... From: https://drive.google.com/uc?id=1KyMpRjewZdyYfxHPYcd-ZbanIXtin0Sn To: /content/DIS/IS-Net/saved_models/isnet.pth 100%|██████████| 177M/177M [00:03<00:00, 56.6MB/s]
代码
文本
Set Parameters
代码
文本
[4]
hypar = {} # paramters for inferencing
hypar["model_path"] ="./saved_models" ## load trained weights from this path
hypar["restore_model"] = "isnet.pth" ## name of the to-be-loaded weights
hypar["interm_sup"] = False ## indicate if activate intermediate feature supervision
## choose floating point accuracy --
hypar["model_digit"] = "full" ## indicates "half" or "full" accuracy of float number
hypar["seed"] = 0
hypar["cache_size"] = [1024, 1024] ## cached input spatial resolution, can be configured into different size
## data augmentation parameters ---
hypar["input_size"] = [1024, 1024] ## mdoel input spatial size, usually use the same value hypar["cache_size"], which means we don't further resize the images
hypar["crop_size"] = [1024, 1024] ## random crop size from the input, it is usually set as smaller than hypar["cache_size"], e.g., [920,920] for data augmentation
hypar["model"] = ISNetDIS()
代码
文本
Build Model
代码
文本
[5]
net = build_model(hypar, device)
代码
文本
Predict Mask
代码
文本
[6]
image_path = "https://i5.walmartimages.com/asr/43995148-22bf-4836-b6d3-e8f64a73be54.5398297e6f59fc510e0111bc6ff3a02a.jpeg"
image_bytes = BytesIO(requests.get(image_path).content)
image_tensor, orig_size = load_image(image_path, hypar)
mask = predict(net,image_tensor,orig_size, hypar, device)
f, ax = plt.subplots(1,2, figsize = (35,20))
ax[0].imshow(np.array(Image.open(image_bytes))) # Original image
ax[1].imshow(mask, cmap = 'gray') # retouched image
ax[0].set_title("Original Image")
ax[1].set_title("Mask")
plt.show()
/usr/local/lib/python3.7/dist-packages/torch/nn/functional.py:3722: UserWarning: nn.functional.upsample is deprecated. Use nn.functional.interpolate instead. warnings.warn("nn.functional.upsample is deprecated. Use nn.functional.interpolate instead.") /usr/local/lib/python3.7/dist-packages/torch/nn/functional.py:1960: UserWarning: nn.functional.sigmoid is deprecated. Use torch.sigmoid instead. warnings.warn("nn.functional.sigmoid is deprecated. Use torch.sigmoid instead.")
代码
文本
点个赞吧
推荐阅读
公开
photomaker_demoxuxh@dp.tech
更新于 2024-08-20
公开
charpter3_logistic_regression/logistic_regressionxuxh@dp.tech
更新于 2024-08-09