Bohrium
robot
新建

空间站广场

论文
Notebooks
比赛
课程
Apps
我的主页
我的Notebooks
我的知识库
我的足迹

我的工作空间

任务
节点
文件
数据集
镜像
项目
数据库
公开
【DeePMD-kit v3教程3】DeePMD-GNN
DeePMD-kit
中文
DeePMD-kit中文
jinzhe.zeng@rutgers.edu
更新于 2024-11-26
推荐镜像 :Basic Image:ubuntu:22.04-py3.10-cuda12.1
推荐机型 :c12_m92_1 * NVIDIA V100
安装环境
训练MACE模型
LAMMPS

详细内容请参见深度势能公众号。

代码
文本
[1]
!nvidia-smi
Tue Nov 26 13:52:39 2024       
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 525.85.12    Driver Version: 525.85.12    CUDA Version: 12.1     |
|-------------------------------+----------------------+----------------------+
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|                               |                      |               MIG M. |
|===============================+======================+======================|
|   0  Tesla V100-SXM2...  Off  | 00000000:00:09.0 Off |                    0 |
| N/A   32C    P0    41W / 300W |      0MiB / 32768MiB |      0%      Default |
|                               |                      |                  N/A |
+-------------------------------+----------------------+----------------------+
                                                                               
+-----------------------------------------------------------------------------+
| Processes:                                                                  |
|  GPU   GI   CI        PID   Type   Process name                  GPU Memory |
|        ID   ID                                                   Usage      |
|=============================================================================|
|  No running processes found                                                 |
+-----------------------------------------------------------------------------+
代码
文本

安装环境

代码
文本
[2]
!wget https://mirror.nju.edu.cn/github-release/deepmodeling/deepmd-kit/v3.0.0/deepmd-kit-3.0.0-cuda126-Linux-x86_64.sh.0 -O deepmd-kit-3.0.0-cuda126-Linux-x86_64.sh.0
!wget https://mirror.nju.edu.cn/github-release/deepmodeling/deepmd-kit/v3.0.0/deepmd-kit-3.0.0-cuda126-Linux-x86_64.sh.1 -O deepmd-kit-3.0.0-cuda126-Linux-x86_64.sh.1
!cat deepmd-kit-3.0.0-cuda126-Linux-x86_64.sh.0 deepmd-kit-3.0.0-cuda126-Linux-x86_64.sh.1 > deepmd-kit-3.0.0-cuda126-Linux-x86_64.sh
--2024-11-26 13:55:49--  https://mirror.nju.edu.cn/github-release/deepmodeling/deepmd-kit/v3.0.0/deepmd-kit-3.0.0-cuda126-Linux-x86_64.sh.0
Resolving ga.dp.tech (ga.dp.tech)... 10.255.254.18, 10.255.254.37, 10.255.254.7
Connecting to ga.dp.tech (ga.dp.tech)|10.255.254.18|:8118... connected.
Proxy request sent, awaiting response... 200 OK
Length: 1593874464 (1.5G) [application/octet-stream]
Saving to: ‘deepmd-kit-3.0.0-cuda126-Linux-x86_64.sh.0’

deepmd-kit-3.0.0-cu 100%[===================>]   1.48G  10.1MB/s    in 4m 32s  

2024-11-26 14:00:21 (5.59 MB/s) - ‘deepmd-kit-3.0.0-cuda126-Linux-x86_64.sh.0’ saved [1593874464/1593874464]

--2024-11-26 14:00:21--  https://mirror.nju.edu.cn/github-release/deepmodeling/deepmd-kit/v3.0.0/deepmd-kit-3.0.0-cuda126-Linux-x86_64.sh.1
Resolving ga.dp.tech (ga.dp.tech)... 10.255.254.37, 10.255.254.7, 10.255.254.18
Connecting to ga.dp.tech (ga.dp.tech)|10.255.254.37|:8118... connected.
Proxy request sent, awaiting response... 200 OK
Length: 1593874465 (1.5G) [application/octet-stream]
Saving to: ‘deepmd-kit-3.0.0-cuda126-Linux-x86_64.sh.1’

deepmd-kit-3.0.0-cu 100%[===================>]   1.48G  9.22MB/s    in 2m 31s  

2024-11-26 14:02:53 (10.1 MB/s) - ‘deepmd-kit-3.0.0-cuda126-Linux-x86_64.sh.1’ saved [1593874465/1593874465]

代码
文本
[4]
!sh deepmd-kit-3.0.0-cuda126-Linux-x86_64.sh -b
PREFIX=/root/deepmd-kit
Unpacking payload ...
Notes:
The off-line packages and conda packages require the GNU C Library 2.17 or above[1]. The GPU version requires compatible NVIDIA driver to be installed in advance[2]. It is possible to force conda to override detection when installation[3] (such as CONDA_OVERRIDE_CUDA), but these requirements are still necessary during runtime.

[1] The GNU C Library. https://www.gnu.org/software/libc/
[2] Minor Version Compatibility. NVIDIA Data Center GPU Driver Documentation. https://docs.nvidia.com/deploy/cuda-compatibility/index.html#minor-version-compatibility
[3] Overriding detected packages. conda documentation. https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-virtual.html#overriding-detected-packages


Installing base environment...

Preparing transaction: ...working... done
Executing transaction: ...working... By downloading and using the cuDNN conda packages, you accept the terms and conditions of the NVIDIA cuDNN EULA -
  https://docs.nvidia.com/deeplearning/cudnn/sla/index.html


To enable CUDA support, UCX requires the CUDA Runtime library (libcudart).
The library can be installed with the appropriate command below:

* For CUDA 11, run:    conda install cudatoolkit cuda-version=11
* For CUDA 12, run:    conda install cuda-cudart cuda-version=12



To enable CUDA support, please follow UCX's instruction above.

To additionally enable NCCL support, run:    conda install nccl



On Linux, Open MPI is built with CUDA awareness but it is disabled by default.
To enable it, please set the environment variable
OMPI_MCA_opal_cuda_support=true
before launching your MPI processes.
Equivalently, you can set the MCA parameter in the command line:
mpiexec --mca opal_cuda_support 1 ...
Note that you might also need to set UCX_MEMTYPE_CACHE=n for CUDA awareness via
UCX. Please consult UCX documentation for further details.


done
Please activate the environment before using the packages:

source /path/to/deepmd-kit/bin/activate /path/to/deepmd-kit

This package enables TensorFlow, PyTorch, and JAX backends.

The following executable files have been installed:
1. DeePMD-kit CLi: dp -h
2. LAMMPS: lmp -h
3. DeePMD-kit i-Pi interface: dp_ipi
4. MPICH: mpirun -h
5. Horovod: horovod -h

The following Python libraries have been installed:
1. deepmd
2. dpdata
3. pylammps

If you have any questions, seek help from https://github.com/deepmodeling/deepmd-kit/discussions

installation finished.
代码
文本
[5]
%%bash
source /root/deepmd-kit/bin/activate /root/deepmd-kit
dp -h
usage: dp [-h]
          [-b {pytorch,pt,tensorflow,tf,jax} | --pytorch | --tensorflow | --jax]
          [--version]
          {transfer,train,freeze,test,compress,doc-train-input,model-devi,convert-from,neighbor-stat,change-bias,train-nvnmd,gui,convert-backend,show}
          ...

DeePMD-kit: A deep learning package for many-body potential energy representation and molecular dynamics

options:
  -h, --help            show this help message and exit
  -b {pytorch,pt,tensorflow,tf,jax}, --backend {pytorch,pt,tensorflow,tf,jax}
                        The backend of the model. Default can be set by environment variable DP_BACKEND. (default: tensorflow)
  --pytorch, --pt       Alias for --backend pytorch (default: None)
  --tensorflow, --tf    Alias for --backend tensorflow (default: None)
  --jax                 Alias for --backend jax (default: None)
  --version             show program's version number and exit

Valid subcommands:
  {transfer,train,freeze,test,compress,doc-train-input,model-devi,convert-from,neighbor-stat,change-bias,train-nvnmd,gui,convert-backend,show}
    transfer            (Supported backend: TensorFlow) pass parameters to another model
    train               train a model
    freeze              freeze the model
    test                test the model
    compress            Compress a model
    doc-train-input     print the documentation (in rst format) of input training parameters.
    model-devi          calculate model deviation
    convert-from        (Supported backend: TensorFlow) convert lower model version to supported version
    neighbor-stat       Calculate neighbor statistics
    change-bias         (Supported backend: PyTorch) Change model out bias according to the input data.
    train-nvnmd         (Supported backend: TensorFlow) train nvnmd model
    gui                 Serve DP-GUI.
    convert-backend     Convert model to another backend.
    show                Show the information of a model

Use --tf or --pt to choose the backend:
    dp --tf train input.json
    dp --pt train input.json
代码
文本
[18]
%%bash
source /root/deepmd-kit/bin/activate /root/deepmd-kit
export CMAKE_PREFIX_PATH=$(python -c "import torch;print(torch.utils.cmake_prefix_path)")
CUDA_BIN_PATH=/usr/local/cuda CUDACXX=/usr/local/cuda/bin/nvcc pip install -v deepmd-gnn --no-binary deepmd-gnn
Using pip 24.3.1 from /root/deepmd-kit/lib/python3.12/site-packages/pip (python 3.12)
Looking in indexes: https://pypi.tuna.tsinghua.edu.cn/simple
Collecting deepmd-gnn
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/66/26/90d816a912b50a4ee091ab8a79d2087924e59ad90e45c89bbb60569a9bae/deepmd_gnn-0.1.0.tar.gz (2.1 MB)
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 2.1/2.1 MB 5.4 MB/s eta 0:00:00ta 0:00:01
  Installing build dependencies: started
  Running command pip subprocess to install build dependencies
  Using pip 24.3.1 from /root/deepmd-kit/lib/python3.12/site-packages/pip (python 3.12)
  Looking in indexes: https://pypi.tuna.tsinghua.edu.cn/simple
  Collecting scikit-build-core>=0.3.0
    Downloading https://pypi.tuna.tsinghua.edu.cn/packages/88/fe/90476c4f6a1b2f922efa00d26e876dd40c7279e28ec18f08f0851ad21ba6/scikit_build_core-0.10.7-py3-none-any.whl (165 kB)
  Collecting packaging>=21.3 (from scikit-build-core>=0.3.0)
    Downloading https://pypi.tuna.tsinghua.edu.cn/packages/88/ef/eb23f262cca3c0c4eb7ab1933c3b1f03d021f2c48f54763065b6f0e321be/packaging-24.2-py3-none-any.whl (65 kB)
  Collecting pathspec>=0.10.1 (from scikit-build-core>=0.3.0)
    Using cached https://pypi.tuna.tsinghua.edu.cn/packages/cc/20/ff623b09d963f88bfde16306a54e12ee5ea43e9b597108672ff3a408aad6/pathspec-0.12.1-py3-none-any.whl (31 kB)
  Installing collected packages: pathspec, packaging, scikit-build-core
  Successfully installed packaging-24.2 pathspec-0.12.1 scikit-build-core-0.10.7
  WARNING: Running pip as the 'root' user can result in broken permissions and conflicting behaviour with the system package manager, possibly rendering your system unusable.It is recommended to use a virtual environment instead: https://pip.pypa.io/warnings/venv. Use the --root-user-action option if you know what you are doing and want to suppress this warning.
  
  Installing build dependencies: finished with status 'done'
  Getting requirements to build wheel: started
  Running command Getting requirements to build wheel
  Getting requirements to build wheel: finished with status 'done'
  Installing backend dependencies: started
  Running command pip subprocess to install backend dependencies
  Using pip 24.3.1 from /root/deepmd-kit/lib/python3.12/site-packages/pip (python 3.12)
  Looking in indexes: https://pypi.tuna.tsinghua.edu.cn/simple
  Collecting setuptools-scm
    Using cached https://pypi.tuna.tsinghua.edu.cn/packages/a0/b9/1906bfeb30f2fc13bb39bf7ddb8749784c05faadbd18a21cf141ba37bff2/setuptools_scm-8.1.0-py3-none-any.whl (43 kB)
  Collecting ninja>=1.5
    Downloading https://pypi.tuna.tsinghua.edu.cn/packages/62/54/787bb70e6af2f1b1853af9bab62a5e7cb35b957d72daf253b7f3c653c005/ninja-1.11.1.2-py3-none-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (422 kB)
  Collecting packaging>=20 (from setuptools-scm)
    Using cached https://pypi.tuna.tsinghua.edu.cn/packages/88/ef/eb23f262cca3c0c4eb7ab1933c3b1f03d021f2c48f54763065b6f0e321be/packaging-24.2-py3-none-any.whl (65 kB)
  Collecting setuptools (from setuptools-scm)
    Downloading https://pypi.tuna.tsinghua.edu.cn/packages/55/21/47d163f615df1d30c094f6c8bbb353619274edccf0327b185cc2493c2c33/setuptools-75.6.0-py3-none-any.whl (1.2 MB)
       ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 0.0/1.2 MB ? eta -:--:--
       ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 1.2/1.2 MB 24.7 MB/s eta 0:00:00
  Installing collected packages: setuptools, packaging, ninja, setuptools-scm
  Successfully installed ninja-1.11.1.2 packaging-24.2 setuptools-75.6.0 setuptools-scm-8.1.0
  WARNING: Running pip as the 'root' user can result in broken permissions and conflicting behaviour with the system package manager, possibly rendering your system unusable.It is recommended to use a virtual environment instead: https://pip.pypa.io/warnings/venv. Use the --root-user-action option if you know what you are doing and want to suppress this warning.
  
  Installing backend dependencies: finished with status 'done'
  Preparing metadata (pyproject.toml): started
  Running command Preparing metadata (pyproject.toml)
  *** scikit-build-core 0.10.7 using CMake 3.22.1 (metadata_wheel)
  Preparing metadata (pyproject.toml): finished with status 'done'
Requirement already satisfied: torch in /root/deepmd-kit/lib/python3.12/site-packages (from deepmd-gnn) (2.4.1.post302)
Requirement already satisfied: deepmd-kit>=3.0.0b2 in /root/deepmd-kit/lib/python3.12/site-packages (from deepmd-kit[torch]>=3.0.0b2->deepmd-gnn) (3.0.0)
Collecting mace-torch>=0.3.5 (from deepmd-gnn)
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/5c/e0/1bf067dbfa5399afe00b6c86a4dc7d023e35cded6f9b7260ce97c6add591/mace_torch-0.3.8-py3-none-any.whl (140 kB)
Collecting nequip (from deepmd-gnn)
  Using cached https://pypi.tuna.tsinghua.edu.cn/packages/a8/61/af868b7e7efc0ee8903a13dcedfd0f7502ee93c392ae06f09fa854f49c78/nequip-0.6.1-py3-none-any.whl (175 kB)
Collecting e3nn (from deepmd-gnn)
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/9b/74/0ddc27c458c48890e5e668879df2987e1126a60529f175843cfc0fa42b4f/e3nn-0.5.4-py3-none-any.whl (447 kB)
Requirement already satisfied: dargs in /root/deepmd-kit/lib/python3.12/site-packages (from deepmd-gnn) (0.4.10)
Requirement already satisfied: numpy>=1.21 in /root/deepmd-kit/lib/python3.12/site-packages (from deepmd-kit>=3.0.0b2->deepmd-kit[torch]>=3.0.0b2->deepmd-gnn) (1.26.4)
Requirement already satisfied: scipy in /root/deepmd-kit/lib/python3.12/site-packages (from deepmd-kit>=3.0.0b2->deepmd-kit[torch]>=3.0.0b2->deepmd-gnn) (1.14.1)
Requirement already satisfied: pyyaml in /root/deepmd-kit/lib/python3.12/site-packages (from deepmd-kit>=3.0.0b2->deepmd-kit[torch]>=3.0.0b2->deepmd-gnn) (6.0.2)
Requirement already satisfied: h5py in /root/deepmd-kit/lib/python3.12/site-packages (from deepmd-kit>=3.0.0b2->deepmd-kit[torch]>=3.0.0b2->deepmd-gnn) (3.12.1)
Requirement already satisfied: wcmatch in /root/deepmd-kit/lib/python3.12/site-packages (from deepmd-kit>=3.0.0b2->deepmd-kit[torch]>=3.0.0b2->deepmd-gnn) (10.0)
Requirement already satisfied: packaging in /root/deepmd-kit/lib/python3.12/site-packages (from deepmd-kit>=3.0.0b2->deepmd-kit[torch]>=3.0.0b2->deepmd-gnn) (24.2)
Requirement already satisfied: ml_dtypes in /root/deepmd-kit/lib/python3.12/site-packages (from deepmd-kit>=3.0.0b2->deepmd-kit[torch]>=3.0.0b2->deepmd-gnn) (0.4.0)
Requirement already satisfied: mendeleev in /root/deepmd-kit/lib/python3.12/site-packages (from deepmd-kit>=3.0.0b2->deepmd-kit[torch]>=3.0.0b2->deepmd-gnn) (0.19.0)
Requirement already satisfied: array-api-compat in /root/deepmd-kit/lib/python3.12/site-packages (from deepmd-kit>=3.0.0b2->deepmd-kit[torch]>=3.0.0b2->deepmd-gnn) (1.9.1)
Requirement already satisfied: typeguard>=4 in /root/deepmd-kit/lib/python3.12/site-packages (from dargs->deepmd-gnn) (4.4.1)
Requirement already satisfied: filelock in /root/deepmd-kit/lib/python3.12/site-packages (from torch->deepmd-gnn) (3.16.1)
Requirement already satisfied: typing-extensions>=4.8.0 in /root/deepmd-kit/lib/python3.12/site-packages (from torch->deepmd-gnn) (4.12.2)
Requirement already satisfied: sympy in /root/deepmd-kit/lib/python3.12/site-packages (from torch->deepmd-gnn) (1.13.3)
Requirement already satisfied: networkx in /root/deepmd-kit/lib/python3.12/site-packages (from torch->deepmd-gnn) (3.4.2)
Requirement already satisfied: jinja2 in /root/deepmd-kit/lib/python3.12/site-packages (from torch->deepmd-gnn) (3.1.4)
Requirement already satisfied: fsspec in /root/deepmd-kit/lib/python3.12/site-packages (from torch->deepmd-gnn) (2024.10.0)
Requirement already satisfied: setuptools in /root/deepmd-kit/lib/python3.12/site-packages (from torch->deepmd-gnn) (75.6.0)
  Using cached https://pypi.tuna.tsinghua.edu.cn/packages/9a/b6/c8327065d1dd8bca28521fe65ff72b649ed17ca8a1f0c1f498006d7567b7/e3nn-0.4.4-py3-none-any.whl (387 kB)
Requirement already satisfied: opt-einsum in /root/deepmd-kit/lib/python3.12/site-packages (from mace-torch>=0.3.5->deepmd-gnn) (3.4.0)
Collecting ase (from mace-torch>=0.3.5->deepmd-gnn)
  Using cached https://pypi.tuna.tsinghua.edu.cn/packages/02/81/2c339c920fb1be1caa0b7efccb14452c9f4f0dbe3837f33519610611f57b/ase-3.23.0-py3-none-any.whl (2.9 MB)
Collecting torch-ema (from mace-torch>=0.3.5->deepmd-gnn)
  Using cached https://pypi.tuna.tsinghua.edu.cn/packages/c0/f1/a47c831436595cffbfd69a19ea129a23627120b13f4886499e58775329d1/torch_ema-0.3-py3-none-any.whl (5.5 kB)
Collecting prettytable (from mace-torch>=0.3.5->deepmd-gnn)
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/73/19/4bb9530512432774fdd7cb7c020851d4decbb811d95f86fd4f6a870a6d3e/prettytable-3.12.0-py3-none-any.whl (31 kB)
Collecting matscipy (from mace-torch>=0.3.5->deepmd-gnn)
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/a7/e2/51247a22f02979020cb95b6480822478c8491b7fb6f792eff125dd15fb1a/matscipy-1.1.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (449 kB)
Collecting torchmetrics (from mace-torch>=0.3.5->deepmd-gnn)
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/46/1a/9728a502f377ab8cff1fd15c625aa2919a183fa113ebcefa2cd38edff28b/torchmetrics-1.6.0-py3-none-any.whl (926 kB)
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 926.4/926.4 kB 11.7 MB/s eta 0:00:00
Collecting python-hostlist (from mace-torch>=0.3.5->deepmd-gnn)
  Using cached python_hostlist-2.0.0-py3-none-any.whl
Collecting configargparse (from mace-torch>=0.3.5->deepmd-gnn)
  Using cached https://pypi.tuna.tsinghua.edu.cn/packages/6f/b3/b4ac838711fd74a2b4e6f746703cf9dd2cf5462d17dac07e349234e21b97/ConfigArgParse-1.7-py3-none-any.whl (25 kB)
Collecting GitPython (from mace-torch>=0.3.5->deepmd-gnn)
  Using cached https://pypi.tuna.tsinghua.edu.cn/packages/e9/bd/cc3a402a6439c15c3d4294333e13042b915bbeab54edc457c723931fed3f/GitPython-3.1.43-py3-none-any.whl (207 kB)
Requirement already satisfied: tqdm in /root/deepmd-kit/lib/python3.12/site-packages (from mace-torch>=0.3.5->deepmd-gnn) (4.67.0)
Requirement already satisfied: matplotlib in /root/deepmd-kit/lib/python3.12/site-packages (from mace-torch>=0.3.5->deepmd-gnn) (3.9.2)
Requirement already satisfied: pandas in /root/deepmd-kit/lib/python3.12/site-packages (from mace-torch>=0.3.5->deepmd-gnn) (2.2.3)
Collecting opt-einsum-fx>=0.1.4 (from e3nn->deepmd-gnn)
  Using cached https://pypi.tuna.tsinghua.edu.cn/packages/8d/4c/e0370709aaf9d7ceb68f975cac559751e75954429a77e83202e680606560/opt_einsum_fx-0.1.4-py3-none-any.whl (13 kB)
Collecting torch-runstats>=0.2.0 (from nequip->deepmd-gnn)
  Using cached https://pypi.tuna.tsinghua.edu.cn/packages/4f/81/021f56cdddce39a04c51abfd17af52f3fba91d30b699af5e5352f8abbff6/torch_runstats-0.2.0-py3-none-any.whl (8.1 kB)
Requirement already satisfied: contourpy>=1.0.1 in /root/deepmd-kit/lib/python3.12/site-packages (from matplotlib->mace-torch>=0.3.5->deepmd-gnn) (1.3.1)
Requirement already satisfied: cycler>=0.10 in /root/deepmd-kit/lib/python3.12/site-packages (from matplotlib->mace-torch>=0.3.5->deepmd-gnn) (0.12.1)
Requirement already satisfied: fonttools>=4.22.0 in /root/deepmd-kit/lib/python3.12/site-packages (from matplotlib->mace-torch>=0.3.5->deepmd-gnn) (4.55.0)
Requirement already satisfied: kiwisolver>=1.3.1 in /root/deepmd-kit/lib/python3.12/site-packages (from matplotlib->mace-torch>=0.3.5->deepmd-gnn) (1.4.7)
Requirement already satisfied: pillow>=8 in /root/deepmd-kit/lib/python3.12/site-packages (from matplotlib->mace-torch>=0.3.5->deepmd-gnn) (11.0.0)
Requirement already satisfied: pyparsing>=2.3.1 in /root/deepmd-kit/lib/python3.12/site-packages (from matplotlib->mace-torch>=0.3.5->deepmd-gnn) (3.2.0)
Requirement already satisfied: python-dateutil>=2.7 in /root/deepmd-kit/lib/python3.12/site-packages (from matplotlib->mace-torch>=0.3.5->deepmd-gnn) (2.9.0.post0)
Collecting gitdb<5,>=4.0.1 (from GitPython->mace-torch>=0.3.5->deepmd-gnn)
  Using cached https://pypi.tuna.tsinghua.edu.cn/packages/fd/5b/8f0c4a5bb9fd491c277c21eff7ccae71b47d43c4446c9d0c6cff2fe8c2c4/gitdb-4.0.11-py3-none-any.whl (62 kB)
Requirement already satisfied: MarkupSafe>=2.0 in /root/deepmd-kit/lib/python3.12/site-packages (from jinja2->torch->deepmd-gnn) (3.0.2)
Requirement already satisfied: Pygments<3.0.0,>=2.11.2 in /root/deepmd-kit/lib/python3.12/site-packages (from mendeleev->deepmd-kit>=3.0.0b2->deepmd-kit[torch]>=3.0.0b2->deepmd-gnn) (2.18.0)
Requirement already satisfied: SQLAlchemy>=1.4.0 in /root/deepmd-kit/lib/python3.12/site-packages (from mendeleev->deepmd-kit>=3.0.0b2->deepmd-kit[torch]>=3.0.0b2->deepmd-gnn) (2.0.36)
Requirement already satisfied: colorama<0.5.0,>=0.4.6 in /root/deepmd-kit/lib/python3.12/site-packages (from mendeleev->deepmd-kit>=3.0.0b2->deepmd-kit[torch]>=3.0.0b2->deepmd-gnn) (0.4.6)
Requirement already satisfied: deprecated<2.0.0,>=1.2.14 in /root/deepmd-kit/lib/python3.12/site-packages (from mendeleev->deepmd-kit>=3.0.0b2->deepmd-kit[torch]>=3.0.0b2->deepmd-gnn) (1.2.15)
Requirement already satisfied: pydantic<3.0.0,>=2.9.2 in /root/deepmd-kit/lib/python3.12/site-packages (from mendeleev->deepmd-kit>=3.0.0b2->deepmd-kit[torch]>=3.0.0b2->deepmd-gnn) (2.10.1)
Requirement already satisfied: pyfiglet<0.9,>=0.8.post1 in /root/deepmd-kit/lib/python3.12/site-packages (from mendeleev->deepmd-kit>=3.0.0b2->deepmd-kit[torch]>=3.0.0b2->deepmd-gnn) (0.8.post1)
Requirement already satisfied: pytz>=2020.1 in /root/deepmd-kit/lib/python3.12/site-packages (from pandas->mace-torch>=0.3.5->deepmd-gnn) (2024.1)
Requirement already satisfied: tzdata>=2022.7 in /root/deepmd-kit/lib/python3.12/site-packages (from pandas->mace-torch>=0.3.5->deepmd-gnn) (2024.2)
Collecting wcwidth (from prettytable->mace-torch>=0.3.5->deepmd-gnn)
  Using cached https://pypi.tuna.tsinghua.edu.cn/packages/fd/84/fd2ba7aafacbad3c4201d395674fc6348826569da3c0937e75505ead3528/wcwidth-0.2.13-py2.py3-none-any.whl (34 kB)
Requirement already satisfied: mpmath<1.4,>=1.1.0 in /root/deepmd-kit/lib/python3.12/site-packages (from sympy->torch->deepmd-gnn) (1.3.0)
Collecting lightning-utilities>=0.8.0 (from torchmetrics->mace-torch>=0.3.5->deepmd-gnn)
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/85/f3/1305321a12c984405e26fc64b5d521569e9872fb811f4aace8e168099160/lightning_utilities-0.11.9-py3-none-any.whl (28 kB)
Requirement already satisfied: bracex>=2.1.1 in /root/deepmd-kit/lib/python3.12/site-packages (from wcmatch->deepmd-kit>=3.0.0b2->deepmd-kit[torch]>=3.0.0b2->deepmd-gnn) (2.2.1)
Requirement already satisfied: wrapt<2,>=1.10 in /root/deepmd-kit/lib/python3.12/site-packages (from deprecated<2.0.0,>=1.2.14->mendeleev->deepmd-kit>=3.0.0b2->deepmd-kit[torch]>=3.0.0b2->deepmd-gnn) (1.16.0)
Collecting smmap<6,>=3.0.1 (from gitdb<5,>=4.0.1->GitPython->mace-torch>=0.3.5->deepmd-gnn)
  Using cached https://pypi.tuna.tsinghua.edu.cn/packages/a7/a5/10f97f73544edcdef54409f1d839f6049a0d79df68adbc1ceb24d1aaca42/smmap-5.0.1-py3-none-any.whl (24 kB)
Requirement already satisfied: annotated-types>=0.6.0 in /root/deepmd-kit/lib/python3.12/site-packages (from pydantic<3.0.0,>=2.9.2->mendeleev->deepmd-kit>=3.0.0b2->deepmd-kit[torch]>=3.0.0b2->deepmd-gnn) (0.7.0)
Requirement already satisfied: pydantic-core==2.27.1 in /root/deepmd-kit/lib/python3.12/site-packages (from pydantic<3.0.0,>=2.9.2->mendeleev->deepmd-kit>=3.0.0b2->deepmd-kit[torch]>=3.0.0b2->deepmd-gnn) (2.27.1)
Requirement already satisfied: six>=1.5 in /root/deepmd-kit/lib/python3.12/site-packages (from python-dateutil>=2.7->matplotlib->mace-torch>=0.3.5->deepmd-gnn) (1.16.0)
Requirement already satisfied: greenlet!=0.4.17 in /root/deepmd-kit/lib/python3.12/site-packages (from SQLAlchemy>=1.4.0->mendeleev->deepmd-kit>=3.0.0b2->deepmd-kit[torch]>=3.0.0b2->deepmd-gnn) (3.1.1)
Building wheels for collected packages: deepmd-gnn
  Building wheel for deepmd-gnn (pyproject.toml): started
  Running command Building wheel for deepmd-gnn (pyproject.toml)
  *** scikit-build-core 0.10.7 using CMake 3.22.1 (wheel)
  *** Configuring CMake...
  loading initial cache file /tmp/tmpc69fz1wa/build/CMakeInit.txt
  -- The CXX compiler identification is GNU 11.4.0
  -- Detecting CXX compiler ABI info
  -- Detecting CXX compiler ABI info - done
  -- Check for working CXX compiler: /usr/bin/g++ - skipped
  -- Detecting CXX compile features
  -- Detecting CXX compile features - done
  -- Could NOT find ZLIB (missing: ZLIB_LIBRARY ZLIB_INCLUDE_DIR)
  -- Looking for C++ include pthread.h
  -- Looking for C++ include pthread.h - found
  -- Performing Test CMAKE_HAVE_LIBC_PTHREAD
  -- Performing Test CMAKE_HAVE_LIBC_PTHREAD - Success
  -- Found Threads: TRUE
  -- Caffe2: Found protobuf with new-style protobuf targets.
  -- Caffe2: Protobuf version 27.5.0
  -- Found CUDA: /usr/local/cuda (found version "12.1")
  -- The CUDA compiler identification is NVIDIA 12.1.105
  -- Detecting CUDA compiler ABI info
  -- Detecting CUDA compiler ABI info - done
  -- Check for working CUDA compiler: /usr/local/cuda/bin/nvcc - skipped
  -- Detecting CUDA compile features
  -- Detecting CUDA compile features - done
  -- Found CUDAToolkit: /usr/local/cuda/include (found version "12.1.105")
  -- Caffe2: CUDA detected: 12.1
  -- Caffe2: CUDA nvcc is: /usr/local/cuda/bin/nvcc
  -- Caffe2: CUDA toolkit directory: /usr/local/cuda
  -- Caffe2: Header version is: 12.1
  -- /usr/local/cuda/lib64/libnvrtc.so shorthash is b51b459d
  -- USE_CUDNN is set to 0. Compiling without cuDNN support
  -- USE_CUSPARSELT is set to 0. Compiling without cuSPARSELt support
  -- Autodetected CUDA architecture(s):  7.0
  -- Added CUDA NVCC flags for: -gencode;arch=compute_70,code=sm_70
  -- Found Torch: /root/deepmd-kit/lib/python3.12/site-packages/torch/lib/libtorch.so
  -- PyTorch CXX11 ABI: 1
  -- Configuring done
  -- Generating done
  -- Build files have been written to: /tmp/tmpc69fz1wa/build
  *** Building project with Ninja...
  [1/2] Building CXX object op/CMakeFiles/deepmd_gnn.dir/edge_index.cc.o
  [2/2] Linking CXX shared module op/libdeepmd_gnn.so
  *** Installing project into wheel...
  -- Install configuration: "Release"
  -- Installing: /tmp/tmpc69fz1wa/wheel/platlib/deepmd_gnn/lib/libdeepmd_gnn.so
  -- Set runtime path of "/tmp/tmpc69fz1wa/wheel/platlib/deepmd_gnn/lib/libdeepmd_gnn.so" to "$ORIGIN"
  -- Installing: /tmp/tmpc69fz1wa/wheel/platlib/deepmd_gnn/lib/__init__.py
  *** Making wheel...
  *** Created deepmd_gnn-0.1.0-py2.py3-none-linux_x86_64.whl
  Building wheel for deepmd-gnn (pyproject.toml): finished with status 'done'
  Created wheel for deepmd-gnn: filename=deepmd_gnn-0.1.0-py2.py3-none-linux_x86_64.whl size=47345 sha256=13ecb62c218aa134549942fdea1ed303fd485c3a68bc70bc9158fc4efb0e10e5
  Stored in directory: /root/.cache/pip/wheels/b7/07/0b/d9685756b9bb203f96e25df50668aad18e2bb9c06fb3d20d8a
Successfully built deepmd-gnn
Installing collected packages: wcwidth, python-hostlist, torch-runstats, smmap, prettytable, lightning-utilities, configargparse, gitdb, torchmetrics, torch-ema, opt-einsum-fx, GitPython, ase, matscipy, e3nn, nequip, mace-torch, deepmd-gnn
  changing mode of /root/deepmd-kit/bin/ase to 755
  changing mode of /root/deepmd-kit/bin/matscipy-rms to 755
  changing mode of /root/deepmd-kit/bin/matscipy-quench to 755
  changing mode of /root/deepmd-kit/bin/matscipy-continuous2discrete to 755
  changing mode of /root/deepmd-kit/bin/matscipy-poisson-nernst-planck to 755
  changing mode of /root/deepmd-kit/bin/matscipy-stericify to 755
  changing mode of /root/deepmd-kit/bin/matscipy-quasistatic-crack to 755
  changing mode of /root/deepmd-kit/bin/matscipy-sinclair-continuation to 755
  changing mode of /root/deepmd-kit/bin/matscipy-sinclair-crack to 755
  changing mode of /root/deepmd-kit/bin/matscipy-average-eam-potential to 755
  changing mode of /root/deepmd-kit/bin/nequip-benchmark to 755
  changing mode of /root/deepmd-kit/bin/nequip-deploy to 755
  changing mode of /root/deepmd-kit/bin/nequip-evaluate to 755
  changing mode of /root/deepmd-kit/bin/nequip-train to 755
  changing mode of /root/deepmd-kit/bin/mace_active_learning_md to 755
  changing mode of /root/deepmd-kit/bin/mace_convert_device to 755
  changing mode of /root/deepmd-kit/bin/mace_create_lammps_model to 755
  changing mode of /root/deepmd-kit/bin/mace_eval_configs to 755
  changing mode of /root/deepmd-kit/bin/mace_finetuning to 755
  changing mode of /root/deepmd-kit/bin/mace_plot_train to 755
  changing mode of /root/deepmd-kit/bin/mace_prepare_data to 755
  changing mode of /root/deepmd-kit/bin/mace_run_train to 755
  changing mode of /root/deepmd-kit/bin/mace_select_head to 755
Successfully installed GitPython-3.1.43 ase-3.23.0 configargparse-1.7 deepmd-gnn-0.1.0 e3nn-0.4.4 gitdb-4.0.11 lightning-utilities-0.11.9 mace-torch-0.3.8 matscipy-1.1.1 nequip-0.6.1 opt-einsum-fx-0.1.4 prettytable-3.12.0 python-hostlist-2.0.0 smmap-5.0.1 torch-ema-0.3 torch-runstats-0.2.0 torchmetrics-1.6.0 wcwidth-0.2.13
WARNING: Running pip as the 'root' user can result in broken permissions and conflicting behaviour with the system package manager, possibly rendering your system unusable.It is recommended to use a virtual environment instead: https://pip.pypa.io/warnings/venv. Use the --root-user-action option if you know what you are doing and want to suppress this warning.
代码
文本

训练MACE模型

代码
文本
[39]
!git clone https://github.com/njzjz/deepmd-gnn
Cloning into 'deepmd-gnn'...
remote: Enumerating objects: 299, done.
remote: Counting objects: 100% (89/89), done.
remote: Compressing objects: 100% (53/53), done.
remote: Total 299 (delta 62), reused 37 (delta 36), pack-reused 210 (from 1)
Receiving objects: 100% (299/299), 1.73 MiB | 1.80 MiB/s, done.
Resolving deltas: 100% (139/139), done.
代码
文本
[45]
%cd deepmd-gnn/examples/water/mace
/deepmd-gnn/examples/water/mace
代码
文本
[46]
! sed -i "s/1000000/2000/g" input.json
! cat input.json
{
  "_comment1": " model parameters",
  "model": {
    "type": "mace",
    "type_map": [
      "O",
      "H"
    ],
    "r_max": 6.0,
    "sel": "auto",
    "hidden_irreps": "64x0e",
    "_comment2": " that's all"
  },

  "learning_rate": {
    "type": "exp",
    "decay_steps": 5000,
    "start_lr": 0.001,
    "stop_lr": 3.51e-8,
    "_comment3": "that's all"
  },

  "loss": {
    "type": "ener",
    "start_pref_e": 0.02,
    "limit_pref_e": 1,
    "start_pref_f": 1000,
    "limit_pref_f": 1,
    "start_pref_v": 0,
    "limit_pref_v": 0,
    "_comment4": " that's all"
  },

  "training": {
    "training_data": {
      "systems": [
        "../data/data_0/",
        "../data/data_1/",
        "../data/data_2/"
      ],
      "batch_size": "auto",
      "_comment5": "that's all"
    },
    "validation_data": {
      "systems": [
        "../data/data_3"
      ],
      "batch_size": 1,
      "numb_btch": 3,
      "_comment6": "that's all"
    },
    "numb_steps": 2000,
    "seed": 10,
    "disp_file": "lcurve.out",
    "disp_freq": 100,
    "save_freq": 1000,
    "_comment7": "that's all"
  },

  "_comment8": "that's all"
}
代码
文本
[47]
%%bash
source /root/deepmd-kit/bin/activate /root/deepmd-kit
# fix matplotlib issue
export MPLBACKEND=svg
dp --pt train input.json
To get the best performance, it is recommended to adjust the number of threads by setting the environment variables OMP_NUM_THREADS, DP_INTRA_OP_PARALLELISM_THREADS, and DP_INTER_OP_PARALLELISM_THREADS. See https://deepmd.rtfd.io/parallelism/ for more information.
/root/deepmd-kit/lib/python3.12/site-packages/e3nn/o3/_wigner.py:10: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature.
  _Jd, _W3j_flat, _W3j_indices = torch.load(os.path.join(os.path.dirname(__file__), 'constants.pt'))
/root/deepmd-kit/lib/python3.12/site-packages/nequip/__init__.py:20: UserWarning: !! PyTorch version 2.4.1.post302 found. Upstream issues in PyTorch versions 1.13.* and 2.* have been seen to cause unusual performance degredations on some CUDA systems that become worse over time; see https://github.com/mir-group/nequip/discussions/311. The best tested PyTorch version to use with CUDA devices is 1.11; while using other versions if you observe this problem, an unexpected lack of this problem, or other strange behavior, please post in the linked GitHub issue.
  warnings.warn(
[2024-11-26 14:50:53,157] DEEPMD INFO    DeePMD version: 3.0.0
[2024-11-26 14:50:53,158] DEEPMD INFO    Configuration path: input.json
[bohrium-156-1226702:01165] shmem: mmap: an error occurred while determining whether or not /tmp/ompi.bohrium-156-1226702.0/jf.0/4238868480/shared_mem_cuda_pool.bohrium-156-1226702 could be created.
[bohrium-156-1226702:01165] create_and_attach: unable to create shared memory BTL coordinating structure :: size 134217728 
[2024-11-26 14:50:54,374] DEEPMD INFO     _____               _____   __  __  _____           _     _  _   
[2024-11-26 14:50:54,375] DEEPMD INFO    |  __ \             |  __ \ |  \/  ||  __ \         | |   (_)| |  
[2024-11-26 14:50:54,375] DEEPMD INFO    | |  | |  ___   ___ | |__) || \  / || |  | | ______ | | __ _ | |_ 
[2024-11-26 14:50:54,375] DEEPMD INFO    | |  | | / _ \ / _ \|  ___/ | |\/| || |  | ||______|| |/ /| || __|
[2024-11-26 14:50:54,375] DEEPMD INFO    | |__| ||  __/|  __/| |     | |  | || |__| |        |   < | || |_ 
[2024-11-26 14:50:54,375] DEEPMD INFO    |_____/  \___| \___||_|     |_|  |_||_____/         |_|\_\|_| \__|
[2024-11-26 14:50:54,375] DEEPMD INFO    Please read and cite:
[2024-11-26 14:50:54,375] DEEPMD INFO    Wang, Zhang, Han and E, Comput.Phys.Comm. 228, 178-184 (2018)
[2024-11-26 14:50:54,375] DEEPMD INFO    Zeng et al, J. Chem. Phys., 159, 054801 (2023)
[2024-11-26 14:50:54,375] DEEPMD INFO    See https://deepmd.rtfd.io/credits/ for details.
[2024-11-26 14:50:54,375] DEEPMD INFO    ---------------------------------------------------------------------------------------------------------
[2024-11-26 14:50:54,375] DEEPMD INFO    installed to:          /root/deepmd-kit/lib/python3.12/site-packages/deepmd
[2024-11-26 14:50:54,375] DEEPMD INFO    source:                
[2024-11-26 14:50:54,375] DEEPMD INFO    source branch:         HEAD
[2024-11-26 14:50:54,375] DEEPMD INFO    source commit:         b1be266
[2024-11-26 14:50:54,375] DEEPMD INFO    source commit at:      2024-11-23 01:37:55 -0800
[2024-11-26 14:50:54,375] DEEPMD INFO    use float prec:        double
[2024-11-26 14:50:54,375] DEEPMD INFO    build variant:         cuda
[2024-11-26 14:50:54,375] DEEPMD INFO    Backend:               PyTorch
[2024-11-26 14:50:54,375] DEEPMD INFO    PT ver:                v2.4.1.post302-gUnknown
[2024-11-26 14:50:54,375] DEEPMD INFO    Enable custom OP:      True
[2024-11-26 14:50:54,375] DEEPMD INFO    build with PT ver:     2.4.1
[2024-11-26 14:50:54,375] DEEPMD INFO    build with PT inc:     /root/deepmd-kit/lib/python3.12/site-packages/torch/include
[2024-11-26 14:50:54,375] DEEPMD INFO                           /root/deepmd-kit/lib/python3.12/site-packages/torch/include/torch/csrc/api/include
[2024-11-26 14:50:54,375] DEEPMD INFO    build with PT lib:     /root/deepmd-kit/lib/python3.12/site-packages/torch/lib
[2024-11-26 14:50:54,375] DEEPMD INFO    running on:            bohrium-156-1226702
[2024-11-26 14:50:54,375] DEEPMD INFO    computing device:      cuda:0
[2024-11-26 14:50:54,375] DEEPMD INFO    CUDA_VISIBLE_DEVICES:  unset
[2024-11-26 14:50:54,375] DEEPMD INFO    Count of visible GPUs: 1
[2024-11-26 14:50:54,375] DEEPMD INFO    num_intra_threads:     0
[2024-11-26 14:50:54,375] DEEPMD INFO    num_inter_threads:     0
[2024-11-26 14:50:54,375] DEEPMD INFO    ---------------------------------------------------------------------------------------------------------
[2024-11-26 14:50:54,439] DEEPMD INFO    Calculate neighbor statistics... (add --skip-neighbor-stat to skip this step)
[2024-11-26 14:50:58,062] DEEPMD INFO    Adjust batch size from 1024 to 2048
[2024-11-26 14:50:58,184] DEEPMD INFO    Adjust batch size from 2048 to 4096
[2024-11-26 14:50:58,280] DEEPMD INFO    Adjust batch size from 4096 to 8192
[2024-11-26 14:50:58,657] DEEPMD INFO    Adjust batch size from 8192 to 16384
[2024-11-26 14:50:58,726] DEEPMD INFO    training data with min nbor dist: 0.8854385688525499
[2024-11-26 14:50:58,727] DEEPMD INFO    training data with max nbor size: [108]
/root/deepmd-kit/lib/python3.12/site-packages/torch/jit/_check.py:178: UserWarning: The TorchScript type system doesn't support instance-level annotations on empty non-base types in `__init__`. Instead, either 1) use a type annotation in the class body, or 2) wrap the type in `torch.jit.Attribute`.
  warnings.warn(
/root/deepmd-kit/lib/python3.12/site-packages/mace/modules/blocks.py:154: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  torch.tensor(atomic_energies, dtype=torch.get_default_dtype()),
/root/deepmd-kit/lib/python3.12/site-packages/torch/jit/_check.py:178: UserWarning: The TorchScript type system doesn't support instance-level annotations on empty non-base types in `__init__`. Instead, either 1) use a type annotation in the class body, or 2) wrap the type in `torch.jit.Attribute`.
  warnings.warn(
/root/deepmd-kit/lib/python3.12/site-packages/torch/jit/_check.py:178: UserWarning: The TorchScript type system doesn't support instance-level annotations on empty non-base types in `__init__`. Instead, either 1) use a type annotation in the class body, or 2) wrap the type in `torch.jit.Attribute`.
  warnings.warn(
/root/deepmd-kit/lib/python3.12/site-packages/torch/jit/_check.py:178: UserWarning: The TorchScript type system doesn't support instance-level annotations on empty non-base types in `__init__`. Instead, either 1) use a type annotation in the class body, or 2) wrap the type in `torch.jit.Attribute`.
  warnings.warn(
/root/deepmd-kit/lib/python3.12/site-packages/torch/jit/_check.py:178: UserWarning: The TorchScript type system doesn't support instance-level annotations on empty non-base types in `__init__`. Instead, either 1) use a type annotation in the class body, or 2) wrap the type in `torch.jit.Attribute`.
  warnings.warn(
/root/deepmd-kit/lib/python3.12/site-packages/torch/jit/_check.py:178: UserWarning: The TorchScript type system doesn't support instance-level annotations on empty non-base types in `__init__`. Instead, either 1) use a type annotation in the class body, or 2) wrap the type in `torch.jit.Attribute`.
  warnings.warn(
/root/deepmd-kit/lib/python3.12/site-packages/torch/jit/_check.py:178: UserWarning: The TorchScript type system doesn't support instance-level annotations on empty non-base types in `__init__`. Instead, either 1) use a type annotation in the class body, or 2) wrap the type in `torch.jit.Attribute`.
  warnings.warn(
/root/deepmd-kit/lib/python3.12/site-packages/torch/jit/_check.py:178: UserWarning: The TorchScript type system doesn't support instance-level annotations on empty non-base types in `__init__`. Instead, either 1) use a type annotation in the class body, or 2) wrap the type in `torch.jit.Attribute`.
  warnings.warn(
/root/deepmd-kit/lib/python3.12/site-packages/torch/jit/_check.py:178: UserWarning: The TorchScript type system doesn't support instance-level annotations on empty non-base types in `__init__`. Instead, either 1) use a type annotation in the class body, or 2) wrap the type in `torch.jit.Attribute`.
  warnings.warn(
/root/deepmd-kit/lib/python3.12/site-packages/torch/jit/_check.py:178: UserWarning: The TorchScript type system doesn't support instance-level annotations on empty non-base types in `__init__`. Instead, either 1) use a type annotation in the class body, or 2) wrap the type in `torch.jit.Attribute`.
  warnings.warn(
/root/deepmd-kit/lib/python3.12/site-packages/torch/jit/_check.py:178: UserWarning: The TorchScript type system doesn't support instance-level annotations on empty non-base types in `__init__`. Instead, either 1) use a type annotation in the class body, or 2) wrap the type in `torch.jit.Attribute`.
  warnings.warn(
/root/deepmd-kit/lib/python3.12/site-packages/torch/jit/_check.py:178: UserWarning: The TorchScript type system doesn't support instance-level annotations on empty non-base types in `__init__`. Instead, either 1) use a type annotation in the class body, or 2) wrap the type in `torch.jit.Attribute`.
  warnings.warn(
/root/deepmd-kit/lib/python3.12/site-packages/torch/jit/_check.py:178: UserWarning: The TorchScript type system doesn't support instance-level annotations on empty non-base types in `__init__`. Instead, either 1) use a type annotation in the class body, or 2) wrap the type in `torch.jit.Attribute`.
  warnings.warn(
/root/deepmd-kit/lib/python3.12/site-packages/torch/jit/_check.py:178: UserWarning: The TorchScript type system doesn't support instance-level annotations on empty non-base types in `__init__`. Instead, either 1) use a type annotation in the class body, or 2) wrap the type in `torch.jit.Attribute`.
  warnings.warn(
[2024-11-26 14:51:00,341] DEEPMD INFO    Packing data for statistics from 3 systems
[2024-11-26 14:51:00,406] DEEPMD INFO    RMSE of energy per atom after linear regression is: 0.0034933501089485374 in the unit of energy.
[2024-11-26 14:51:01,021] DEEPMD INFO    ---Summary of DataSystem: training     -----------------------------------------------
[2024-11-26 14:51:01,021] DEEPMD INFO    found 3 system(s):
[2024-11-26 14:51:01,021] DEEPMD INFO                                        system  natoms  bch_sz   n_bch       prob  pbc
[2024-11-26 14:51:01,021] DEEPMD INFO                               ../data/data_0/     192       1      80  2.500e-01    T
[2024-11-26 14:51:01,021] DEEPMD INFO                               ../data/data_1/     192       1     160  5.000e-01    T
[2024-11-26 14:51:01,021] DEEPMD INFO                               ../data/data_2/     192       1      80  2.500e-01    T
[2024-11-26 14:51:01,021] DEEPMD INFO    --------------------------------------------------------------------------------------
[2024-11-26 14:51:01,024] DEEPMD INFO    ---Summary of DataSystem: validation   -----------------------------------------------
[2024-11-26 14:51:01,025] DEEPMD INFO    found 1 system(s):
[2024-11-26 14:51:01,025] DEEPMD INFO                                        system  natoms  bch_sz   n_bch       prob  pbc
[2024-11-26 14:51:01,025] DEEPMD INFO                                ../data/data_3     192       1      80  1.000e+00    T
[2024-11-26 14:51:01,025] DEEPMD INFO    --------------------------------------------------------------------------------------
[2024-11-26 14:51:01,030] DEEPMD INFO    Start to train 2000 steps.
[2024-11-26 14:51:07,180] DEEPMD INFO    batch       1: trn: rmse = 2.66e+01, rmse_e = 7.67e-03, rmse_f = 8.41e-01, lr = 1.00e-03
[2024-11-26 14:51:07,180] DEEPMD INFO    batch       1: val: rmse = 2.49e+01, rmse_e = 4.53e-03, rmse_f = 7.89e-01
[2024-11-26 14:51:07,180] DEEPMD INFO    batch       1: total wall time = 6.15 s
[2024-11-26 14:51:31,475] DEEPMD INFO    batch     100: trn: rmse = 1.85e+01, rmse_e = 3.84e-01, rmse_f = 5.85e-01, lr = 1.00e-03
[2024-11-26 14:51:31,476] DEEPMD INFO    batch     100: val: rmse = 1.67e+01, rmse_e = 4.06e-01, rmse_f = 5.28e-01
[2024-11-26 14:51:31,476] DEEPMD INFO    batch     100: total wall time = 24.30 s
[2024-11-26 14:51:42,337] DEEPMD INFO    batch     200: trn: rmse = 7.67e+00, rmse_e = 2.31e-01, rmse_f = 3.02e-01, lr = 5.99e-04
[2024-11-26 14:51:42,337] DEEPMD INFO    batch     200: val: rmse = 7.58e+00, rmse_e = 2.24e-01, rmse_f = 2.99e-01
[2024-11-26 14:51:42,338] DEEPMD INFO    batch     200: total wall time = 10.86 s
[2024-11-26 14:51:53,211] DEEPMD INFO    batch     300: trn: rmse = 5.74e+00, rmse_e = 4.10e-02, rmse_f = 3.02e-01, lr = 3.59e-04
[2024-11-26 14:51:53,211] DEEPMD INFO    batch     300: val: rmse = 5.34e+00, rmse_e = 3.45e-02, rmse_f = 2.81e-01
[2024-11-26 14:51:53,211] DEEPMD INFO    batch     300: total wall time = 10.87 s
[2024-11-26 14:52:04,127] DEEPMD INFO    batch     400: trn: rmse = 4.03e+00, rmse_e = 1.78e-02, rmse_f = 2.74e-01, lr = 2.15e-04
[2024-11-26 14:52:04,128] DEEPMD INFO    batch     400: val: rmse = 4.07e+00, rmse_e = 1.79e-02, rmse_f = 2.77e-01
[2024-11-26 14:52:04,128] DEEPMD INFO    batch     400: total wall time = 10.92 s
[2024-11-26 14:52:14,987] DEEPMD INFO    batch     500: trn: rmse = 3.22e+00, rmse_e = 1.12e-02, rmse_f = 2.83e-01, lr = 1.29e-04
[2024-11-26 14:52:14,988] DEEPMD INFO    batch     500: val: rmse = 2.98e+00, rmse_e = 8.02e-03, rmse_f = 2.62e-01
[2024-11-26 14:52:14,988] DEEPMD INFO    batch     500: total wall time = 10.86 s
[2024-11-26 14:52:25,847] DEEPMD INFO    batch     600: trn: rmse = 2.38e+00, rmse_e = 1.24e-03, rmse_f = 2.69e-01, lr = 7.70e-05
[2024-11-26 14:52:25,848] DEEPMD INFO    batch     600: val: rmse = 2.47e+00, rmse_e = 6.16e-03, rmse_f = 2.80e-01
[2024-11-26 14:52:25,848] DEEPMD INFO    batch     600: total wall time = 10.86 s
[2024-11-26 14:52:36,771] DEEPMD INFO    batch     700: trn: rmse = 1.77e+00, rmse_e = 6.96e-03, rmse_f = 2.58e-01, lr = 4.61e-05
[2024-11-26 14:52:36,772] DEEPMD INFO    batch     700: val: rmse = 1.78e+00, rmse_e = 5.67e-03, rmse_f = 2.59e-01
[2024-11-26 14:52:36,772] DEEPMD INFO    batch     700: total wall time = 10.92 s
[2024-11-26 14:52:47,628] DEEPMD INFO    batch     800: trn: rmse = 1.40e+00, rmse_e = 7.32e-03, rmse_f = 2.62e-01, lr = 2.76e-05
[2024-11-26 14:52:47,629] DEEPMD INFO    batch     800: val: rmse = 1.42e+00, rmse_e = 1.95e-03, rmse_f = 2.67e-01
[2024-11-26 14:52:47,629] DEEPMD INFO    batch     800: total wall time = 10.86 s
[2024-11-26 14:52:58,494] DEEPMD INFO    batch     900: trn: rmse = 1.20e+00, rmse_e = 2.30e-03, rmse_f = 2.87e-01, lr = 1.65e-05
[2024-11-26 14:52:58,495] DEEPMD INFO    batch     900: val: rmse = 1.06e+00, rmse_e = 6.49e-03, rmse_f = 2.52e-01
[2024-11-26 14:52:58,495] DEEPMD INFO    batch     900: total wall time = 10.87 s
[2024-11-26 14:53:09,407] DEEPMD INFO    batch    1000: trn: rmse = 8.92e-01, rmse_e = 9.33e-03, rmse_f = 2.68e-01, lr = 9.89e-06
[2024-11-26 14:53:09,408] DEEPMD INFO    batch    1000: val: rmse = 8.88e-01, rmse_e = 5.43e-03, rmse_f = 2.68e-01
[2024-11-26 14:53:09,408] DEEPMD INFO    batch    1000: total wall time = 10.91 s
[2024-11-26 14:53:09,428] DEEPMD INFO    Saved model to model.ckpt-1000.pt
[2024-11-26 14:53:20,323] DEEPMD INFO    batch    1100: trn: rmse = 6.84e-01, rmse_e = 3.79e-03, rmse_f = 2.59e-01, lr = 5.92e-06
[2024-11-26 14:53:20,323] DEEPMD INFO    batch    1100: val: rmse = 7.15e-01, rmse_e = 5.26e-04, rmse_f = 2.72e-01
[2024-11-26 14:53:20,323] DEEPMD INFO    batch    1100: total wall time = 10.92 s
[2024-11-26 14:53:31,201] DEEPMD INFO    batch    1200: trn: rmse = 5.74e-01, rmse_e = 4.24e-03, rmse_f = 2.68e-01, lr = 3.55e-06
[2024-11-26 14:53:31,201] DEEPMD INFO    batch    1200: val: rmse = 5.92e-01, rmse_e = 6.23e-03, rmse_f = 2.74e-01
[2024-11-26 14:53:31,201] DEEPMD INFO    batch    1200: total wall time = 10.88 s
[2024-11-26 14:53:42,080] DEEPMD INFO    batch    1300: trn: rmse = 5.03e-01, rmse_e = 4.98e-03, rmse_f = 2.82e-01, lr = 2.12e-06
[2024-11-26 14:53:42,081] DEEPMD INFO    batch    1300: val: rmse = 4.93e-01, rmse_e = 1.93e-03, rmse_f = 2.78e-01
[2024-11-26 14:53:42,081] DEEPMD INFO    batch    1300: total wall time = 10.88 s
[2024-11-26 14:53:53,013] DEEPMD INFO    batch    1400: trn: rmse = 4.24e-01, rmse_e = 1.95e-03, rmse_f = 2.81e-01, lr = 1.27e-06
[2024-11-26 14:53:53,014] DEEPMD INFO    batch    1400: val: rmse = 4.27e-01, rmse_e = 4.54e-03, rmse_f = 2.80e-01
[2024-11-26 14:53:53,014] DEEPMD INFO    batch    1400: total wall time = 10.93 s
[2024-11-26 14:54:03,891] DEEPMD INFO    batch    1500: trn: rmse = 3.64e-01, rmse_e = 1.54e-03, rmse_f = 2.74e-01, lr = 7.62e-07
[2024-11-26 14:54:03,891] DEEPMD INFO    batch    1500: val: rmse = 3.64e-01, rmse_e = 3.46e-03, rmse_f = 2.71e-01
[2024-11-26 14:54:03,891] DEEPMD INFO    batch    1500: total wall time = 10.88 s
[2024-11-26 14:54:14,754] DEEPMD INFO    batch    1600: trn: rmse = 3.51e-01, rmse_e = 3.90e-04, rmse_f = 2.91e-01, lr = 4.56e-07
[2024-11-26 14:54:14,754] DEEPMD INFO    batch    1600: val: rmse = 3.27e-01, rmse_e = 3.94e-03, rmse_f = 2.63e-01
[2024-11-26 14:54:14,754] DEEPMD INFO    batch    1600: total wall time = 10.86 s
[2024-11-26 14:54:25,667] DEEPMD INFO    batch    1700: trn: rmse = 2.88e-01, rmse_e = 2.73e-03, rmse_f = 2.53e-01, lr = 2.73e-07
[2024-11-26 14:54:25,667] DEEPMD INFO    batch    1700: val: rmse = 3.08e-01, rmse_e = 3.71e-03, rmse_f = 2.68e-01
[2024-11-26 14:54:25,667] DEEPMD INFO    batch    1700: total wall time = 10.91 s
[2024-11-26 14:54:36,573] DEEPMD INFO    batch    1800: trn: rmse = 2.97e-01, rmse_e = 1.43e-03, rmse_f = 2.75e-01, lr = 1.63e-07
[2024-11-26 14:54:36,573] DEEPMD INFO    batch    1800: val: rmse = 3.04e-01, rmse_e = 1.28e-03, rmse_f = 2.81e-01
[2024-11-26 14:54:36,573] DEEPMD INFO    batch    1800: total wall time = 10.91 s
[2024-11-26 14:54:47,471] DEEPMD INFO    batch    1900: trn: rmse = 3.01e-01, rmse_e = 2.08e-03, rmse_f = 2.86e-01, lr = 9.79e-08
[2024-11-26 14:54:47,471] DEEPMD INFO    batch    1900: val: rmse = 3.02e-01, rmse_e = 3.24e-03, rmse_f = 2.84e-01
[2024-11-26 14:54:47,471] DEEPMD INFO    batch    1900: total wall time = 10.90 s
[2024-11-26 14:54:58,354] DEEPMD INFO    batch    2000: trn: rmse = 2.86e-01, rmse_e = 2.17e-03, rmse_f = 2.76e-01, lr = 5.86e-08
[2024-11-26 14:54:58,355] DEEPMD INFO    batch    2000: val: rmse = 2.78e-01, rmse_e = 1.41e-03, rmse_f = 2.69e-01
[2024-11-26 14:54:58,355] DEEPMD INFO    batch    2000: total wall time = 10.88 s
[2024-11-26 14:54:58,373] DEEPMD INFO    Saved model to model.ckpt-2000.pt
[2024-11-26 14:54:58,375] DEEPMD INFO    average training time: 0.1034 s/batch
[2024-11-26 14:54:58,375] DEEPMD INFO    Trained model has been saved to: model.ckpt
代码
文本
[48]
%%bash
source /root/deepmd-kit/bin/activate /root/deepmd-kit
# fix matplotlib issue
export MPLBACKEND=svg
DP_GNN_USE_MAPPING=1 dp --pt freeze
To get the best performance, it is recommended to adjust the number of threads by setting the environment variables OMP_NUM_THREADS, DP_INTRA_OP_PARALLELISM_THREADS, and DP_INTER_OP_PARALLELISM_THREADS. See https://deepmd.rtfd.io/parallelism/ for more information.
/root/deepmd-kit/lib/python3.12/site-packages/e3nn/o3/_wigner.py:10: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature.
  _Jd, _W3j_flat, _W3j_indices = torch.load(os.path.join(os.path.dirname(__file__), 'constants.pt'))
/root/deepmd-kit/lib/python3.12/site-packages/nequip/__init__.py:20: UserWarning: !! PyTorch version 2.4.1.post302 found. Upstream issues in PyTorch versions 1.13.* and 2.* have been seen to cause unusual performance degredations on some CUDA systems that become worse over time; see https://github.com/mir-group/nequip/discussions/311. The best tested PyTorch version to use with CUDA devices is 1.11; while using other versions if you observe this problem, an unexpected lack of this problem, or other strange behavior, please post in the linked GitHub issue.
  warnings.warn(
[2024-11-26 14:55:06,721] DEEPMD INFO    DeePMD version: 3.0.0
/root/deepmd-kit/lib/python3.12/site-packages/torch/jit/_check.py:178: UserWarning: The TorchScript type system doesn't support instance-level annotations on empty non-base types in `__init__`. Instead, either 1) use a type annotation in the class body, or 2) wrap the type in `torch.jit.Attribute`.
  warnings.warn(
/root/deepmd-kit/lib/python3.12/site-packages/mace/modules/blocks.py:154: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
  torch.tensor(atomic_energies, dtype=torch.get_default_dtype()),
/root/deepmd-kit/lib/python3.12/site-packages/torch/jit/_check.py:178: UserWarning: The TorchScript type system doesn't support instance-level annotations on empty non-base types in `__init__`. Instead, either 1) use a type annotation in the class body, or 2) wrap the type in `torch.jit.Attribute`.
  warnings.warn(
/root/deepmd-kit/lib/python3.12/site-packages/torch/jit/_check.py:178: UserWarning: The TorchScript type system doesn't support instance-level annotations on empty non-base types in `__init__`. Instead, either 1) use a type annotation in the class body, or 2) wrap the type in `torch.jit.Attribute`.
  warnings.warn(
/root/deepmd-kit/lib/python3.12/site-packages/torch/jit/_check.py:178: UserWarning: The TorchScript type system doesn't support instance-level annotations on empty non-base types in `__init__`. Instead, either 1) use a type annotation in the class body, or 2) wrap the type in `torch.jit.Attribute`.
  warnings.warn(
/root/deepmd-kit/lib/python3.12/site-packages/torch/jit/_check.py:178: UserWarning: The TorchScript type system doesn't support instance-level annotations on empty non-base types in `__init__`. Instead, either 1) use a type annotation in the class body, or 2) wrap the type in `torch.jit.Attribute`.
  warnings.warn(
/root/deepmd-kit/lib/python3.12/site-packages/torch/jit/_check.py:178: UserWarning: The TorchScript type system doesn't support instance-level annotations on empty non-base types in `__init__`. Instead, either 1) use a type annotation in the class body, or 2) wrap the type in `torch.jit.Attribute`.
  warnings.warn(
/root/deepmd-kit/lib/python3.12/site-packages/torch/jit/_check.py:178: UserWarning: The TorchScript type system doesn't support instance-level annotations on empty non-base types in `__init__`. Instead, either 1) use a type annotation in the class body, or 2) wrap the type in `torch.jit.Attribute`.
  warnings.warn(
/root/deepmd-kit/lib/python3.12/site-packages/torch/jit/_check.py:178: UserWarning: The TorchScript type system doesn't support instance-level annotations on empty non-base types in `__init__`. Instead, either 1) use a type annotation in the class body, or 2) wrap the type in `torch.jit.Attribute`.
  warnings.warn(
/root/deepmd-kit/lib/python3.12/site-packages/torch/jit/_check.py:178: UserWarning: The TorchScript type system doesn't support instance-level annotations on empty non-base types in `__init__`. Instead, either 1) use a type annotation in the class body, or 2) wrap the type in `torch.jit.Attribute`.
  warnings.warn(
/root/deepmd-kit/lib/python3.12/site-packages/torch/jit/_check.py:178: UserWarning: The TorchScript type system doesn't support instance-level annotations on empty non-base types in `__init__`. Instead, either 1) use a type annotation in the class body, or 2) wrap the type in `torch.jit.Attribute`.
  warnings.warn(
/root/deepmd-kit/lib/python3.12/site-packages/torch/jit/_check.py:178: UserWarning: The TorchScript type system doesn't support instance-level annotations on empty non-base types in `__init__`. Instead, either 1) use a type annotation in the class body, or 2) wrap the type in `torch.jit.Attribute`.
  warnings.warn(
/root/deepmd-kit/lib/python3.12/site-packages/torch/jit/_check.py:178: UserWarning: The TorchScript type system doesn't support instance-level annotations on empty non-base types in `__init__`. Instead, either 1) use a type annotation in the class body, or 2) wrap the type in `torch.jit.Attribute`.
  warnings.warn(
/root/deepmd-kit/lib/python3.12/site-packages/torch/jit/_check.py:178: UserWarning: The TorchScript type system doesn't support instance-level annotations on empty non-base types in `__init__`. Instead, either 1) use a type annotation in the class body, or 2) wrap the type in `torch.jit.Attribute`.
  warnings.warn(
/root/deepmd-kit/lib/python3.12/site-packages/torch/jit/_check.py:178: UserWarning: The TorchScript type system doesn't support instance-level annotations on empty non-base types in `__init__`. Instead, either 1) use a type annotation in the class body, or 2) wrap the type in `torch.jit.Attribute`.
  warnings.warn(
[2024-11-26 14:55:10,232] DEEPMD INFO    Saved frozen model to frozen_model.pth
代码
文本
[49]
%%bash
source /root/deepmd-kit/bin/activate /root/deepmd-kit
# fix matplotlib issue
export MPLBACKEND=svg
dp test -m frozen_model.pth -s ../data
[2024-11-26 14:55:14,548] DEEPMD WARNING To get the best performance, it is recommended to adjust the number of threads by setting the environment variables OMP_NUM_THREADS, DP_INTRA_OP_PARALLELISM_THREADS, and DP_INTER_OP_PARALLELISM_THREADS. See https://deepmd.rtfd.io/parallelism/ for more information.
/root/deepmd-kit/lib/python3.12/site-packages/e3nn/o3/_wigner.py:10: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature.
  _Jd, _W3j_flat, _W3j_indices = torch.load(os.path.join(os.path.dirname(__file__), 'constants.pt'))
/root/deepmd-kit/lib/python3.12/site-packages/nequip/__init__.py:20: UserWarning: !! PyTorch version 2.4.1.post302 found. Upstream issues in PyTorch versions 1.13.* and 2.* have been seen to cause unusual performance degredations on some CUDA systems that become worse over time; see https://github.com/mir-group/nequip/discussions/311. The best tested PyTorch version to use with CUDA devices is 1.11; while using other versions if you observe this problem, an unexpected lack of this problem, or other strange behavior, please post in the linked GitHub issue.
  warnings.warn(
[2024-11-26 14:55:19,663] DEEPMD INFO    # ---------------output of dp test--------------- 
[2024-11-26 14:55:19,664] DEEPMD INFO    # testing system : ../data/data_0
[2024-11-26 14:55:22,360] DEEPMD INFO    Adjust batch size from 1024 to 2048
[2024-11-26 14:55:23,712] DEEPMD INFO    Adjust batch size from 2048 to 4096
[2024-11-26 14:55:25,173] DEEPMD INFO    Adjust batch size from 4096 to 2048
[2024-11-26 14:55:34,284] DEEPMD INFO    # number of test data : 80 
[2024-11-26 14:55:34,284] DEEPMD INFO    Energy MAE         : 5.991981e-01 eV
[2024-11-26 14:55:34,284] DEEPMD INFO    Energy RMSE        : 7.495066e-01 eV
[2024-11-26 14:55:34,284] DEEPMD INFO    Energy MAE/Natoms  : 3.120823e-03 eV
[2024-11-26 14:55:34,284] DEEPMD INFO    Energy RMSE/Natoms : 3.903680e-03 eV
[2024-11-26 14:55:34,284] DEEPMD INFO    Force  MAE         : 2.138180e-01 eV/A
[2024-11-26 14:55:34,284] DEEPMD INFO    Force  RMSE        : 2.741595e-01 eV/A
[2024-11-26 14:55:34,284] DEEPMD INFO    Virial MAE         : 5.309256e+01 eV
[2024-11-26 14:55:34,284] DEEPMD INFO    Virial RMSE        : 8.842711e+01 eV
[2024-11-26 14:55:34,284] DEEPMD INFO    Virial MAE/Natoms  : 2.765238e-01 eV
[2024-11-26 14:55:34,284] DEEPMD INFO    Virial RMSE/Natoms : 4.605579e-01 eV
[2024-11-26 14:55:34,284] DEEPMD INFO    # ----------------------------------------------- 
[2024-11-26 14:55:34,284] DEEPMD INFO    # ---------------output of dp test--------------- 
[2024-11-26 14:55:34,284] DEEPMD INFO    # testing system : ../data/data_3
[2024-11-26 14:55:38,736] DEEPMD INFO    # number of test data : 80 
[2024-11-26 14:55:38,737] DEEPMD INFO    Energy MAE         : 6.394387e-01 eV
[2024-11-26 14:55:38,737] DEEPMD INFO    Energy RMSE        : 8.184914e-01 eV
[2024-11-26 14:55:38,737] DEEPMD INFO    Energy MAE/Natoms  : 3.330410e-03 eV
[2024-11-26 14:55:38,737] DEEPMD INFO    Energy RMSE/Natoms : 4.262976e-03 eV
[2024-11-26 14:55:38,737] DEEPMD INFO    Force  MAE         : 2.132759e-01 eV/A
[2024-11-26 14:55:38,737] DEEPMD INFO    Force  RMSE        : 2.741950e-01 eV/A
[2024-11-26 14:55:38,737] DEEPMD INFO    Virial MAE         : 5.326480e+01 eV
[2024-11-26 14:55:38,737] DEEPMD INFO    Virial RMSE        : 8.885984e+01 eV
[2024-11-26 14:55:38,737] DEEPMD INFO    Virial MAE/Natoms  : 2.774209e-01 eV
[2024-11-26 14:55:38,737] DEEPMD INFO    Virial RMSE/Natoms : 4.628117e-01 eV
[2024-11-26 14:55:38,737] DEEPMD INFO    # ----------------------------------------------- 
[2024-11-26 14:55:38,737] DEEPMD INFO    # ---------------output of dp test--------------- 
[2024-11-26 14:55:38,737] DEEPMD INFO    # testing system : ../data/data_2
[2024-11-26 14:55:43,197] DEEPMD INFO    # number of test data : 80 
[2024-11-26 14:55:43,197] DEEPMD INFO    Energy MAE         : 5.846051e-01 eV
[2024-11-26 14:55:43,197] DEEPMD INFO    Energy RMSE        : 7.266745e-01 eV
[2024-11-26 14:55:43,197] DEEPMD INFO    Energy MAE/Natoms  : 3.044818e-03 eV
[2024-11-26 14:55:43,197] DEEPMD INFO    Energy RMSE/Natoms : 3.784763e-03 eV
[2024-11-26 14:55:43,197] DEEPMD INFO    Force  MAE         : 2.146874e-01 eV/A
[2024-11-26 14:55:43,197] DEEPMD INFO    Force  RMSE        : 2.753202e-01 eV/A
[2024-11-26 14:55:43,197] DEEPMD INFO    Virial MAE         : 5.306633e+01 eV
[2024-11-26 14:55:43,197] DEEPMD INFO    Virial RMSE        : 8.846988e+01 eV
[2024-11-26 14:55:43,198] DEEPMD INFO    Virial MAE/Natoms  : 2.763871e-01 eV
[2024-11-26 14:55:43,198] DEEPMD INFO    Virial RMSE/Natoms : 4.607806e-01 eV
[2024-11-26 14:55:43,198] DEEPMD INFO    # ----------------------------------------------- 
[2024-11-26 14:55:43,198] DEEPMD INFO    # ---------------output of dp test--------------- 
[2024-11-26 14:55:43,198] DEEPMD INFO    # testing system : ../data/data_1
[2024-11-26 14:55:52,100] DEEPMD INFO    # number of test data : 160 
[2024-11-26 14:55:52,100] DEEPMD INFO    Energy MAE         : 6.981322e-01 eV
[2024-11-26 14:55:52,100] DEEPMD INFO    Energy RMSE        : 8.735210e-01 eV
[2024-11-26 14:55:52,100] DEEPMD INFO    Energy MAE/Natoms  : 3.636105e-03 eV
[2024-11-26 14:55:52,100] DEEPMD INFO    Energy RMSE/Natoms : 4.549589e-03 eV
[2024-11-26 14:55:52,100] DEEPMD INFO    Force  MAE         : 2.125663e-01 eV/A
[2024-11-26 14:55:52,100] DEEPMD INFO    Force  RMSE        : 2.730179e-01 eV/A
[2024-11-26 14:55:52,100] DEEPMD INFO    Virial MAE         : 5.321527e+01 eV
[2024-11-26 14:55:52,100] DEEPMD INFO    Virial RMSE        : 8.857804e+01 eV
[2024-11-26 14:55:52,100] DEEPMD INFO    Virial MAE/Natoms  : 2.771629e-01 eV
[2024-11-26 14:55:52,100] DEEPMD INFO    Virial RMSE/Natoms : 4.613439e-01 eV
[2024-11-26 14:55:52,100] DEEPMD INFO    # ----------------------------------------------- 
[2024-11-26 14:55:52,101] DEEPMD INFO    # ----------weighted average of errors----------- 
[2024-11-26 14:55:52,101] DEEPMD INFO    # number of systems : 4
[2024-11-26 14:55:52,101] DEEPMD INFO    Energy MAE         : 6.439013e-01 eV
[2024-11-26 14:55:52,101] DEEPMD INFO    Energy RMSE        : 8.106568e-01 eV
[2024-11-26 14:55:52,101] DEEPMD INFO    Energy MAE/Natoms  : 3.353652e-03 eV
[2024-11-26 14:55:52,101] DEEPMD INFO    Energy RMSE/Natoms : 4.222171e-03 eV
[2024-11-26 14:55:52,101] DEEPMD INFO    Force  MAE         : 2.133828e-01 eV/A
[2024-11-26 14:55:52,101] DEEPMD INFO    Force  RMSE        : 2.739435e-01 eV/A
[2024-11-26 14:55:52,101] DEEPMD INFO    Virial MAE         : 5.317085e+01 eV
[2024-11-26 14:55:52,101] DEEPMD INFO    Virial RMSE        : 8.858271e+01 eV
[2024-11-26 14:55:52,101] DEEPMD INFO    Virial MAE/Natoms  : 2.769315e-01 eV
[2024-11-26 14:55:52,101] DEEPMD INFO    Virial RMSE/Natoms : 4.613683e-01 eV
[2024-11-26 14:55:52,101] DEEPMD INFO    # ----------------------------------------------- 
代码
文本

LAMMPS

代码
文本
[50]
%cd /
/
/opt/mamba/lib/python3.10/site-packages/IPython/core/magics/osm.py:417: UserWarning: using dhist requires you to install the `pickleshare` library.
  self.shell.db['dhist'] = compress_dhist(dhist)[-100:]
代码
文本
[35]
!git clone https://github.com/deepmodeling/deepmd-kit
Cloning into 'deepmd-kit'...
remote: Enumerating objects: 36554, done.
remote: Counting objects: 100% (1538/1538), done.
remote: Compressing objects: 100% (1027/1027), done.
remote: Total 36554 (delta 828), reused 948 (delta 505), pack-reused 35016 (from 1)
Receiving objects: 100% (36554/36554), 63.97 MiB | 4.60 MiB/s, done.
Resolving deltas: 100% (27124/27124), done.
代码
文本
[51]
%cd deepmd-kit/examples/water/lmp
/deepmd-kit/examples/water/lmp
代码
文本
[52]
!cp /deepmd-gnn/examples/water/mace/frozen_model.pth .
代码
文本
[62]
%%bash
source /root/deepmd-kit/bin/activate /root/deepmd-kit

cat<<EOF > mace.in
units metal
boundary p p p
atom_style atomic
atom_modify map yes

neighbor 0.0 bin
neigh_modify every 50 delay 0 check no

read_data water.lmp
mass 1 16
mass 2 2

replicate 4 4 4

pair_style deepmd frozen_model.pth
pair_coeff * *

velocity all create 330.0 23456789

timestep 0.0005
thermo_style custom step pe ke etotal temp press vol
thermo 20
run 100
run 500
EOF

DP_PLUGIN_PATH=$CONDA_PREFIX/lib/python3.12/site-packages/deepmd_gnn/lib/libdeepmd_gnn.so lmp -in mace.in
[bohrium-156-1226702:01512] shmem: mmap: an error occurred while determining whether or not /tmp/ompi.bohrium-156-1226702.0/jf.0/2389704704/shared_mem_cuda_pool.bohrium-156-1226702 could be created.
[bohrium-156-1226702:01512] create_and_attach: unable to create shared memory BTL coordinating structure :: size 134217728 
LAMMPS (29 Aug 2024)
OMP_NUM_THREADS environment is not set. Defaulting to 1 thread. (src/comm.cpp:98)
  using 1 OpenMP thread(s) per MPI task
DeePMD-kit: Successfully load libcudart.so.12
2024-11-26 15:01:16.941735: E external/local_xla/xla/stream_executor/cuda/cuda_fft.cc:485] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered
2024-11-26 15:01:16.961344: E external/local_xla/xla/stream_executor/cuda/cuda_dnn.cc:8454] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered
2024-11-26 15:01:16.967427: E external/local_xla/xla/stream_executor/cuda/cuda_blas.cc:1452] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered
DeePMD-kit WARNING: Environmental variable DP_INTRA_OP_PARALLELISM_THREADS is not set. Tune DP_INTRA_OP_PARALLELISM_THREADS for the best performance. See https://deepmd.rtfd.io/parallelism/ for more information.
DeePMD-kit WARNING: Environmental variable DP_INTER_OP_PARALLELISM_THREADS is not set. Tune DP_INTER_OP_PARALLELISM_THREADS for the best performance. See https://deepmd.rtfd.io/parallelism/ for more information.
DeePMD-kit WARNING: Environmental variable OMP_NUM_THREADS is not set. Tune OMP_NUM_THREADS for the best performance. See https://deepmd.rtfd.io/parallelism/ for more information.
Loaded 1 plugins from /root/deepmd-kit/lib/deepmd_lmp
Reading data file ...
  triclinic box = (0 0 0) to (12.4447 12.4447 12.4447) with tilt (0 0 0)
  1 by 1 by 1 MPI processor grid
  reading atoms ...
  192 atoms
  read_data CPU = 0.001 seconds
Replication is creating a 4x4x4 = 64 times larger system...
  triclinic box = (0 0 0) to (49.7788 49.7788 49.7788) with tilt (0 0 0)
  1 by 1 by 1 MPI processor grid
  12288 atoms
  replicate CPU = 0.001 seconds
Summary of lammps deepmd module ...
  >>> Info of deepmd-kit:
  installed to:       /root/deepmd-kit
  source:             
  source branch:      HEAD
  source commit:      b1be266
  source commit at:   2024-11-23 01:37:55 -0800
  support model ver.: 1.1 
  build variant:      cuda
  build with tf inc:  /root/deepmd-kit/lib/python3.12/site-packages/tensorflow/include;/root/deepmd-kit/include
  build with tf lib:  /root/deepmd-kit/lib/python3.12/site-packages/tensorflow/libtensorflow_cc.so.2
  build with pt lib:  torch;torch_library;/root/deepmd-kit/lib/python3.12/site-packages/torch/lib/libc10.so;/home/conda/feedstock_root/build_artifacts/deepmd-kit_1732355244818/_build_env/targets/x86_64-linux/lib/stubs/libcuda.so;/root/deepmd-kit/lib/libnvrtc.so;/root/deepmd-kit/lib/libnvToolsExt.so;/root/deepmd-kit/lib/libcudart.so;/root/deepmd-kit/lib/python3.12/site-packages/torch/lib/libc10_cuda.so
  set tf intra_op_parallelism_threads: 0
  set tf inter_op_parallelism_threads: 0
  >>> Info of lammps module:
Loading customized plugin defined in DP_PLUGIN_PATH: /root/deepmd-kit/lib/python3.12/site-packages/deepmd_gnn/lib/libdeepmd_gnn.so
  use deepmd-kit at:  /root/deepmd-kitload model from: frozen_model.pth to gpu 0
DeePMD-kit WARNING: Environmental variable DP_INTRA_OP_PARALLELISM_THREADS is not set. Tune DP_INTRA_OP_PARALLELISM_THREADS for the best performance. See https://deepmd.rtfd.io/parallelism/ for more information.
DeePMD-kit WARNING: Environmental variable DP_INTER_OP_PARALLELISM_THREADS is not set. Tune DP_INTER_OP_PARALLELISM_THREADS for the best performance. See https://deepmd.rtfd.io/parallelism/ for more information.
DeePMD-kit WARNING: Environmental variable OMP_NUM_THREADS is not set. Tune OMP_NUM_THREADS for the best performance. See https://deepmd.rtfd.io/parallelism/ for more information.
  >>> Info of model(s):
  using   1 model(s): frozen_model.pth 
  rcut in model:      6
  ntypes in model:    2

CITE-CITE-CITE-CITE-CITE-CITE-CITE-CITE-CITE-CITE-CITE-CITE-CITE

Your simulation uses code contributions which should be cited:
- Type Label Framework: https://doi.org/10.1021/acs.jpcb.3c08419
- USER-DEEPMD package:
The log file lists these citations in BibTeX format.

CITE-CITE-CITE-CITE-CITE-CITE-CITE-CITE-CITE-CITE-CITE-CITE-CITE

WARNING: No fixes with time integration, atoms won't move (src/verlet.cpp:60)
Generated 0 of 1 mixed pair_coeff terms from geometric mixing rule
Neighbor list info ...
  update: every = 50 steps, delay = 0 steps, check = no
  max neighbors/atom: 2000, page size: 100000
  master list distance cutoff = 6
  ghost atom cutoff = 6
  binsize = 3, bins = 17 17 17
  1 neighbor lists, perpetual/occasional/extra = 1 0 0
  (1) pair deepmd, perpetual
      attributes: full, newton on
      pair build: full/bin/atomonly
      stencil: full/bin/3d
      bin: standard
Setting up Verlet run ...
  Unit style    : metal
  Current step  : 0
  Time step     : 0.0005
Per MPI rank memory allocation (min/avg/max) = 9.202 | 9.202 | 9.202 Mbytes
   Step         PotEng         KinEng         TotEng          Temp          Press          Volume    
         0  -1916392.1      524.1124      -1915868        330            133139.9       123348.33    
        20  -1916392.1      524.1124      -1915868        330            133139.9       123348.33    
        40  -1916392.1      524.1124      -1915868        330            133139.9       123348.33    
        60  -1916392.1      524.1124      -1915868        330            133139.9       123348.33    
        80  -1916392.1      524.1124      -1915868        330            133139.9       123348.33    
       100  -1916392.1      524.1124      -1915868        330            133139.9       123348.33    
Loop time of 57.522 on 1 procs for 100 steps with 12288 atoms

Performance: 0.075 ns/day, 319.567 hours/ns, 1.738 timesteps/s, 21.362 katom-step/s
60.3% CPU use with 1 MPI tasks x 1 OpenMP threads

MPI task timing breakdown:
Section |  min time  |  avg time  |  max time  |%varavg| %total
---------------------------------------------------------------
Pair    | 57.433     | 57.433     | 57.433     |   0.0 | 99.84
Neigh   | 0.065962   | 0.065962   | 0.065962   |   0.0 |  0.11
Comm    | 0.016848   | 0.016848   | 0.016848   |   0.0 |  0.03
Output  | 0.00051596 | 0.00051596 | 0.00051596 |   0.0 |  0.00
Modify  | 0.00013413 | 0.00013413 | 0.00013413 |   0.0 |  0.00
Other   |            | 0.005854   |            |       |  0.01

Nlocal:          12288 ave       12288 max       12288 min
Histogram: 1 0 0 0 0 0 0 0 0 0
Nghost:          11142 ave       11142 max       11142 min
Histogram: 1 0 0 0 0 0 0 0 0 0
Neighs:              0 ave           0 max           0 min
Histogram: 1 0 0 0 0 0 0 0 0 0
FullNghs:  1.08749e+06 ave 1.08749e+06 max 1.08749e+06 min
Histogram: 1 0 0 0 0 0 0 0 0 0

Total # of neighbors = 1087488
Ave neighs/atom = 88.5
Neighbor list builds = 2
Dangerous builds not checked
WARNING: No fixes with time integration, atoms won't move (src/verlet.cpp:60)
Generated 0 of 1 mixed pair_coeff terms from geometric mixing rule
Setting up Verlet run ...
  Unit style    : metal
  Current step  : 100
  Time step     : 0.0005
Per MPI rank memory allocation (min/avg/max) = 9.202 | 9.202 | 9.202 Mbytes
   Step         PotEng         KinEng         TotEng          Temp          Press          Volume    
       100  -1916392.1      524.1124      -1915868        330            133139.9       123348.33    
       120  -1916392.1      524.1124      -1915868        330            133139.9       123348.33    
       140  -1916392.1      524.1124      -1915868        330            133139.9       123348.33    
       160  -1916392.1      524.1124      -1915868        330            133139.9       123348.33    
       180  -1916392.1      524.1124      -1915868        330            133139.9       123348.33    
       200  -1916392.1      524.1124      -1915868        330            133139.9       123348.33    
       220  -1916392.1      524.1124      -1915868        330            133139.9       123348.33    
       240  -1916392.1      524.1124      -1915868        330            133139.9       123348.33    
       260  -1916392.1      524.1124      -1915868        330            133139.9       123348.33    
       280  -1916392.1      524.1124      -1915868        330            133139.9       123348.33    
       300  -1916392.1      524.1124      -1915868        330            133139.9       123348.33    
       320  -1916392.1      524.1124      -1915868        330            133139.9       123348.33    
       340  -1916392.1      524.1124      -1915868        330            133139.9       123348.33    
       360  -1916392.1      524.1124      -1915868        330            133139.9       123348.33    
       380  -1916392.1      524.1124      -1915868        330            133139.89      123348.33    
       400  -1916392.1      524.1124      -1915868        330            133139.9       123348.33    
       420  -1916392.1      524.1124      -1915868        330            133139.89      123348.33    
       440  -1916392.1      524.1124      -1915868        330            133139.9       123348.33    
       460  -1916392.1      524.1124      -1915868        330            133139.9       123348.33    
       480  -1916392.1      524.1124      -1915868        330            133139.9       123348.33    
       500  -1916392.1      524.1124      -1915868        330            133139.9       123348.33    
       520  -1916392.1      524.1124      -1915868        330            133139.9       123348.33    
       540  -1916392.1      524.1124      -1915868        330            133139.9       123348.33    
       560  -1916392.1      524.1124      -1915868        330            133139.9       123348.33    
       580  -1916392.1      524.1124      -1915868        330            133139.9       123348.33    
       600  -1916392.1      524.1124      -1915868        330            133139.9       123348.33    
Loop time of 271.127 on 1 procs for 500 steps with 12288 atoms

Performance: 0.080 ns/day, 301.252 hours/ns, 1.844 timesteps/s, 22.661 katom-step/s
57.6% CPU use with 1 MPI tasks x 1 OpenMP threads

MPI task timing breakdown:
Section |  min time  |  avg time  |  max time  |%varavg| %total
---------------------------------------------------------------
Pair    | 270.68     | 270.68     | 270.68     |   0.0 | 99.84
Neigh   | 0.33132    | 0.33132    | 0.33132    |   0.0 |  0.12
Comm    | 0.083801   | 0.083801   | 0.083801   |   0.0 |  0.03
Output  | 0.0025498  | 0.0025498  | 0.0025498  |   0.0 |  0.00
Modify  | 0.00068837 | 0.00068837 | 0.00068837 |   0.0 |  0.00
Other   |            | 0.02849    |            |       |  0.01

Nlocal:          12288 ave       12288 max       12288 min
Histogram: 1 0 0 0 0 0 0 0 0 0
Nghost:          11142 ave       11142 max       11142 min
Histogram: 1 0 0 0 0 0 0 0 0 0
Neighs:              0 ave           0 max           0 min
Histogram: 1 0 0 0 0 0 0 0 0 0
FullNghs:  1.08749e+06 ave 1.08749e+06 max 1.08749e+06 min
Histogram: 1 0 0 0 0 0 0 0 0 0

Total # of neighbors = 1087488
Ave neighs/atom = 88.5
Neighbor list builds = 10
Dangerous builds not checked
Total wall time: 0:05:37
代码
文本
DeePMD-kit
中文
DeePMD-kit中文
点个赞吧
{/**/}