空间站广场
我的工作空间
App 介绍
Uni-Fold 是深势科技于2021年推出的高精度蛋白质结构预测模型。在 Google DeepMind 推出的 AlphaFold [1] 基础上,深势科技团队成功突破技术壁垒,使用 PyTorch 复现了 AlphaFold2 及其完整训练过程,并从训练数据、模型结构、代码实现等多方面进行了优化与改进。经过不断迭代,目前 Uni-Fold 已达到预测精度超越 AlphaFold、推理速度显著提升、端到端训练速度提升超1倍的成就 [2]。目前的 Uni-Fold 支持蛋白质单体与复合物的高精度结构预测。同时,对于具有旋转对称性的蛋白质同源高聚体,Uni-Fold 提供预测方案 UF-Symmetry [3],使结构预测复杂度与聚体数目无关,从数量级上提升了此类任务的预测速度。此外,Uni-Fold@Apps 采用MSA搜索方案 MMSeqs2,极大的提升了同源序列搜索的效率。对于一般的预测任务,Uni-Fold@Apps 在数分钟左右即可返回预测结果。
参考文献
[1] J Jumper et al. Highly Accurate Protein Structure Prediction with AlphaFold. Nature, 2021. doi: https://doi.org/10.1038/s41586-021-03819-2
[2] Z Li et al. Uni-Fold: An Open-Source Platform for Developing Protein Folding Models beyond AlphaFold. In bioRxiv, 2022. doi: https://doi.org/10.1101/2022.08.04.502811
[3] Z Li et al. Uni-Fold Symmetry: Harnessing Symmetry in Folding Large Protein Complexes. In bioRxiv, 2022. doi: https://doi.org/10.1101/2022.08.30.505833
引用格式
Uni-Fold:
@article {uni-fold, author = {Li, Ziyao and Liu, Xuyang and Chen, Weijie and Shen, Fan and Bi, Hangrui and Ke, Guolin and Zhang, Linfeng}, title = {Uni-Fold: An Open-Source Platform for Developing Protein Folding Models beyond AlphaFold}, year = {2022}, doi = {10.1101/2022.08.04.502811}, URL = {https://www.biorxiv.org/content/10.1101/2022.08.04.502811v3}, eprint = {https://www.biorxiv.org/content/10.1101/2022.08.04.502811v3.full.pdf}, journal = {bioRxiv} }
UF-Symmetry:
@article {uf-symmetry, author = {Li, Ziyao and Yang, Shuwen and Liu, Xuyang and Chen, Weijie and Wen, Han and Shen, Fan and Ke, Guolin and Zhang, Linfeng}, title = {Uni-Fold Symmetry: Harnessing Symmetry in Folding Large Protein Complexes}, year = {2022}, doi = {10.1101/2022.08.30.505833}, URL = {https://www.biorxiv.org/content/early/2022/08/30/2022.08.30.505833}, eprint = {https://www.biorxiv.org/content/early/2022/08/30/2022.08.30.505833.full.pdf}, journal = {bioRxiv} }